Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mott insulator of strongly interacting two-dimensional semiconductor excitons

Abstract

In condensed-matter physics, Mott insulators are an important phase involving strongly interacting electrons because of their intricate relationship with high-temperature superconductors1,2. Mott phases were recently observed for both bosonic and fermionic species in atomic systems3,4,5,6,7,8,9. However, in the solid state, the fingerprint of a Mott insulator implemented with bosons has yet to be found. Here we demonstrate such signature by exploring the Bose–Hubbard model using semiconductor excitons confined in a two-dimensional lattice. We emphasize the regime where on-site interactions are comparable to the energy separation between lattice-confined states. We then observe that a Mott phase is accessible, with at most two excitons uniformly occupying each lattice site. The technology introduced here allows us to programme the geometry of the lattice that confines the excitons. This versatility, combined with the long-range nature of dipolar interactions between excitons, provides a route to explore many-body phases that spontaneously break the lattice symmetry10,11.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Bose–Hubbard physics.
Fig. 2: Arbitrary filling of an 800 nm period lattice.
Fig. 3: Mott-like phases in an 800 nm period lattice.
Fig. 4: Mott insulator in a 400 nm period lattice.

Similar content being viewed by others

Data availability

Source data are provided with this paper.

References

  1. Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17 (2006).

    Article  ADS  Google Scholar 

  2. Gebhard, F. The Mott Metal-Insulator Transition (Springer, 1997).

  3. Greiner, M., Mandel, O., Esslinger, T., Haensch, T. W. & Bloch, I. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002).

    Article  ADS  Google Scholar 

  4. Gemelke, N., Zhang, X., Hung, C. L. & Chin, C. In situ observation of incompressible Mott-insulating domains in ultracold atomic gases. Nature 460, 995–998 (2009).

    Article  ADS  Google Scholar 

  5. Bakr, W. S. et al. Probing the superfluid-to-Mott insulator transition at the single-atom level. Science 329, 547–550 (2010).

    Article  ADS  Google Scholar 

  6. Sherson, J. et al. Single-atom-resolved fluorescence imaging of an atomic Mott insulator. Nature 467, 68–72 (2010).

    Article  ADS  Google Scholar 

  7. Jordens, R., Strohmaier, N., Guenter, K., Moritz, H. & Esslinger, T. A Mott insulator of fermionic atoms in an optical lattice. Nature 455, 204–207 (2008).

    Article  ADS  Google Scholar 

  8. Schneider, U. et al. Metallic and insulating phases of repulsively interacting fermions in a 3D optical lattice. Science 322, 1520–1525 (2010).

    Article  ADS  Google Scholar 

  9. Greif, D. et al. Site-resolved imaging of a fermionic Mott insulator. Science 351, 953–957 (2016).

    Article  ADS  Google Scholar 

  10. Dutta, O. et al. Non-standard Hubbard models in optical lattices: a review. Rep. Prog. Phys. 78, 066001 (2015).

    Article  ADS  Google Scholar 

  11. Baranov, M. A., Dalmonte, M., Pupillo, G. & Zoller, P. Condensed matter theory of dipolar quantum gases. Chem. Rev. 112, 5012–5061 (2012).

    Article  Google Scholar 

  12. Salomon, C. et al. (eds) Many-Body Physics with Ultracold Gases: Lecture Notes of the Les Houches Summer School (Oxford Scholarship, 2010).

  13. Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    Article  ADS  Google Scholar 

  14. Shimazaki, Y. et al. Strongly correlated electrons and hybrid excitons in a moiré heterostructure. Nature 580, 472–477 (2020).

    Article  ADS  Google Scholar 

  15. Tang, Y. et al. Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. Nature 579, 353–358 (2020).

    Article  ADS  Google Scholar 

  16. Regan, E. C. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 579, 359–363 (2020).

    Article  ADS  Google Scholar 

  17. Moses, S. et al. New frontiers for quantum gases of polar molecules. Nat. Phys. 13, 13–20 (2017).

    Article  Google Scholar 

  18. Goral, K., Santos, L. & Lewenstein, M. Quantum phases of dipolar bosons in optical lattices. Phys. Rev. Lett. 88, 170406 (2002).

    Article  ADS  Google Scholar 

  19. Trefzger, C., Menotti, C., Capogrosso-Sansone, B. & Lewenstein, M. Ultracold dipolar gases in optical lattices. J. Phys. B: . Mol. Opt. Phys. 44, 193001 (2010).

    Article  ADS  Google Scholar 

  20. Baier, S. et al. Extended Bose-Hubbard models with ultracold magnetic atoms. Science 352, 201–205 (2016).

    Article  MathSciNet  ADS  Google Scholar 

  21. Larson, J., Collin, A. & Martikainen, J.-P. Multiband bosons in optical lattices. Phys. Rev. A 79, 033603 (2009).

    Article  ADS  Google Scholar 

  22. Mark, M. J. et al. Precision measurements on a tunable Mott insulator of ultracold atoms. Phys. Rev. Lett. 107, 175301 (2011).

    Article  ADS  Google Scholar 

  23. Seyler, K. L. et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 567, 66–70 (2019).

    Article  ADS  Google Scholar 

  24. Tran, K. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 567, 71–75 (2019).

    Article  ADS  Google Scholar 

  25. Jin, C. et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 567, 76–80 (2019).

    Article  ADS  Google Scholar 

  26. Alexeev, E. M. et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature 567, 81–86 (2019).

    Article  ADS  Google Scholar 

  27. Combescot, M., Combescot, R. & Dubin, F. Bose–Einstein condensation of indirect excitons: a review. Rep. Prog. Phys. 80, 066401 (2017).

    Article  Google Scholar 

  28. Lagoin, C. et al. Microscopic lattice for two-dimensional dipolar excitons. Phys. Rev. B 102, 245428 (2020).

    Article  ADS  Google Scholar 

  29. Lagoin, C. et al. Quasicondensation of bilayer excitons in a periodic potential. Phys. Rev. Lett. 126, 067404 (2021).

    Article  ADS  Google Scholar 

  30. High, A. A. et al. Trapping indirect excitons in a GaAs quantum-well structure with a diamond-shaped electrostatic trap. Phys. Rev. Lett. 103, 087403 (2009).

    Article  ADS  Google Scholar 

  31. Grosso, G. et al. Excitonic switches operating at around 100 K. Nat. Photon. 3, 577–580 (2009).

    Article  ADS  Google Scholar 

  32. Winbow, A. G. et al. Electrostatic conveyer for excitons. Phys. Rev. Lett. 106, 196806 (2011).

    Article  ADS  Google Scholar 

  33. Rosenberg, I., Mazuz-Harpaz, Y., Rapaport, R., West, K. & Pfeiffer, L. Electrically controlled mutual interactions of flying waveguide dipolaritons. Phys. Rev. B 93, 195151 (2016).

    Article  ADS  Google Scholar 

  34. Schinner, G. J. et al. Confinement and interaction of single indirect excitons in a voltage-controlled trap formed inside double InGaAs quantum wells. Phys. Rev. Lett. 110, 127403 (2013).

    Article  ADS  Google Scholar 

  35. Mahmud, K. W. et al. Finite-temperature study of bosons in a two-dimensional optical lattice. Phys. Rev. B 84, 054302 (2011).

    Article  ADS  Google Scholar 

  36. Ivanov, A. L. Thermalization and photoluminescence dynamics of indirect excitons at low bath temperatures. J. Phys. Condens. Matter 16, S3629 (2004).

    Article  ADS  Google Scholar 

  37. Beian, M. et al. Spectroscopic signatures for the dark Bose-Einstein condensation of spatially indirect excitons. EuroPhys. Lett. 119, 37004 (2017).

    Article  ADS  Google Scholar 

  38. Mott, N. Conduction in glasses containing transition metal ions. J. Non Cryst. Solids 1, 1–17 (1968).

    Article  ADS  Google Scholar 

  39. Capogrosso-Sansone, B., Trefzger, C., Lewenstein, M., Zoller, P. & Pupillo, G. Quantum phases of cold polar molecules in 2D optical lattices. Phys. Rev. Lett. 104, 125301 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank M. Holzmann for his crucial support in calculating microscopically dipolar interactions in the lattice, M. Lewenstein, M. Polini and A. Reserbat-Plantey for a critical reading of our manuscript, together with S. Gasparetto for graphical works. F.D. and C.L. acknowledge the Labex Matisse and IXTASE from the French Agency for Research (ANR-20-CE30-0032-01). The work at Princeton University (L.P. and K.B.) was funded by the Gordon and Betty Moore Foundation through the EPiQS initiative Grant GBMF4420 and by the National Science Foundation MRSEC Grant DMR 1420541.

Author information

Authors and Affiliations

Authors

Contributions

L.P. and K.B. realized the bare semiconductor quantum wells on which C.L., S.S. and F.D. realized the electronic lithography necessary to engineer the final sample with electrostatic lattices. C.L. and F.D. performed the experiments on this sample, analysed the results and wrote the manuscript. F.D. designed the project.

Corresponding author

Correspondence to François Dubin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review informationNature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. S1–S12, Tables 1 and 2 and Sections I to V.

Source data

Source Data Fig. 2

Raw experimental data for all panels of Fig 2.

Source Data Fig. 3

Raw experimental data for all panels of Fig 3.

Source Data Fig. 4

Raw experimental data for all panels of Fig 4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lagoin, C., Suffit, S., Baldwin, K. et al. Mott insulator of strongly interacting two-dimensional semiconductor excitons. Nat. Phys. 18, 149–153 (2022). https://doi.org/10.1038/s41567-021-01440-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-021-01440-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing