Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Controlling two-photon emission from superluminal and accelerating index perturbations

Abstract

Sources of photons with controllable quantum properties such as entanglement and squeezing are desired for applications in quantum information, metrology and sensing. However, fine-grained control over these properties is hard to achieve, especially for two-photon sources. Here we propose a mechanism for the controlled generation of entangled and squeezed photon pairs using superluminal or accelerating modulations of the refractive index in a medium or both. By leveraging time-changing dielectric media, where quantum vacuum fluctuations of the electromagnetic field can be converted into photon pairs, we show that energy and momentum conservation in multimode systems give rise to frequency and angle correlations of photon pairs controlled by the trajectory of index modulation. In our examples, these radiation effects are two-photon analogues of Cherenkov and synchrotron radiation by moving charged particles such as free electrons. We find that synchrotron-like radiation into photon pairs exhibits frequency correlations that can enable a heralded single-photon frequency comb. These effects are sensitive to the local density of photonic states and can be strongly enhanced using photonic nanostructures. For example, index modulations propagating near the surface of graphene produce entangled pairs of graphene plasmons with high efficiency.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Analogy between free-electron radiation and quantum radiation from moving index perturbations.
Fig. 2: Two-photon Cherenkov radiation by a superluminal index perturbation.
Fig. 3: Two-photon synchrotron radiation by an accelerating index perturbation.
Fig. 4: Emission of entangled plasmon pairs by moving index perturbations near graphene.

Similar content being viewed by others

Data availability

Source data are provided with this paper. All other data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Barz, S., Cronenberg, G., Zeilinger, A. & Walther, P. Heralded generation of entangled photon pairs. Nat. Photon. 4, 553–556 (2010).

    Article  ADS  Google Scholar 

  2. Loudon, R. & Knight, P. L. Squeezed light. J. Mod. Opt. 34, 709–759 (1987).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. O’Brien, J. L. Optical quantum computing. Science 318, 1567–1570 (2007).

    Article  ADS  Google Scholar 

  4. Gisin, N. & Thew, R. Quantum communication. Nat. Photon. 1, 165–171 (2007).

    Article  ADS  Google Scholar 

  5. Shapiro, J. H. Computational ghost imaging. Phys. Rev. A 78, 061802 (2008).

    Article  ADS  Google Scholar 

  6. Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  7. D’Ariano, G. M., Paris, M. G. & Sacchi, M. F. Quantum tomography. Adv. Imag. Elect. Phys. 128, 206–309 (2003).

    Google Scholar 

  8. Shapiro, J. & Breit, G. Metastability of 2s states of hydrogenic atoms. Phys. Rev. 113, 179 (1959).

    Article  ADS  Google Scholar 

  9. Hayat, A., Ginzburg, P. & Orenstein, M. Observation of two-photon emission from semiconductors. Nat. Photon. 2, 238–241 (2008).

    Article  Google Scholar 

  10. Hayat, A., Nevet, A., Ginzburg, P. & Orenstein, M. Applications of two-photon processes in semiconductor photonic devices: invited review. Semicond. Sci. Tech. 26, 083001 (2011).

    Article  ADS  Google Scholar 

  11. Ota, Y., Iwamoto, S., Kumagai, N. & Arakawa, Y. Spontaneous two-photon emission from a single quantum dot. Phys. Rev. Lett. 107, 233602 (2011).

    Article  ADS  Google Scholar 

  12. Frank, I. Optics of light sources moving in refractive media. Science 131, 702–712 (1960).

    Article  ADS  Google Scholar 

  13. Boyd, R. W. Nonlinear Optics (Academic Press, 2019).

  14. Muñoz, C. S. et al. Emitters of N-photon bundles. Nat. Photon. 8, 550–555 (2014).

    Article  ADS  Google Scholar 

  15. Bin, Q., Lü, X.-Y., Laussy, F. P., Nori, F. & Wu, Y. N-phonon bundle emission via the Stokes process. Phys. Rev. Lett. 124, 053601 (2020).

    Article  ADS  Google Scholar 

  16. Law, C. Effective Hamiltonian for the radiation in a cavity with a moving mirror and a time-varying dielectric medium. Phys. Rev. A 49, 433 (1994).

    Article  ADS  Google Scholar 

  17. Zurita-Sánchez, J. R., Halevi, P. & Cervantes-Gonzalez, J. C. Reflection and transmission of a wave incident on a slab with a time-periodic dielectric function ϵ(t). Phys. Rev. A 79, 053821 (2009).

    Article  ADS  Google Scholar 

  18. Chu, R. & Tamir, T. Wave propagation and dispersion in space-time periodic media. Proc. IEEE, 119, 797–806 (1972).

  19. Harfoush, F. & Taflove, A. Scattering of electromagnetic waves by a material half-space with a time-varying conductivity. IEEE Trans. Antennas Propag. 39, 898–906 (1991).

    Article  ADS  Google Scholar 

  20. Fante, R. Transmission of electromagnetic waves into time-varying media. IEEE Trans. Antennas Propag. 19, 417–424 (1971).

    Article  ADS  Google Scholar 

  21. Holberg, D. & Kunz, K. Parametric properties of fields in a slab of time-varying permittivity. IEEE Trans. Antennas Propag. 14, 183–194 (1966).

    Article  ADS  Google Scholar 

  22. Moore, G. T. Quantum theory of the electromagnetic field in a variable-length one-dimensional cavity. J. Math. Phys. 11, 2679–2691 (1970).

    Article  ADS  Google Scholar 

  23. Dodonov, V. Current status of the dynamical Casimir effect. Phys. Scr. 82, 038105 (2010).

    Article  ADS  Google Scholar 

  24. Wilson, C. M. et al. Observation of the dynamical Casimir effect in a superconducting circuit. Nature 479, 376–379 (2011).

    Article  ADS  Google Scholar 

  25. Louisell, W., Yariv, A. & Siegman, A. Quantum fluctuations and noise in parametric processes. I. Phys. Rev. 124, 1646 (1961).

    Article  ADS  MATH  Google Scholar 

  26. Maghrebi, M. F., Jaffe, R. L. & Kardar, M. Spontaneous emission by rotating objects: a scattering approach. Phys. Rev. Lett. 108, 230403 (2012).

    Article  ADS  Google Scholar 

  27. Fulling, S. A. & Davies, P. C. Radiation from a moving mirror in two dimensional space-time: conformal anomaly. Proc. R. Soc. Lond. A 348, 393–414 (1976).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Unruh, W. G. & Wald, R. M. What happens when an accelerating observer detects a Rindler particle. Phys. Rev. D 29, 1047 (1984).

    Article  ADS  Google Scholar 

  29. Hawking, S. W. Particle creation by black holes. Commun. Math. Phys. 43, 199–220 (1975).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Shtanov, Y., Traschen, J. & Brandenberger, R. Universe reheating after inflation. Phys. Rev. D 51, 5438 (1995).

    Article  ADS  Google Scholar 

  31. Nation, P., Johansson, J., Blencowe, M. & Nori, F. Colloquium: stimulating uncertainty: amplifying the quantum vacuum with superconducting circuits. Rev. Mod. Phys. 84, 1 (2012).

    Article  ADS  Google Scholar 

  32. Belgiorno, F., Cacciatori, S., Ortenzi, G., Sala, V. & Faccio, D. Quantum radiation from superluminal refractive-index perturbations. Phys. Rev. Lett. 104, 140403 (2010).

    Article  ADS  Google Scholar 

  33. Dalla Piazza, F., Belgiorno, F., Cacciatori, S. L. & Faccio, D. Emission of correlated photon pairs from superluminal perturbations in dispersive media. Phys. Rev. A 85, 033833 (2012).

    Article  ADS  Google Scholar 

  34. Engheta, N. Metamaterials with high degrees of freedom: space, time, and more. Nanophotonics 10, 639–642 (2021).

    Article  Google Scholar 

  35. Caloz, C. & Deck-Léger, Z.-L. Spacetime metamaterials—part I: general concepts. IEEE Trans. Antennas Propag. 68, 1569–1582 (2019).

    Article  ADS  Google Scholar 

  36. Cherenkov, P. A. Visible emission from clean liquids under the action of gamma radiation. Dokl. Akad. Nauk SSSR 2, 451–454 (1934).

    Google Scholar 

  37. Schwinger, J., DeRaad, L. L. Jr, Milton, K. & Tsai, W.-Y. Classical Electrodynamics (Westview Press, 1998).

  38. Kues, M. et al. Quantum optical microcombs. Nat. Photon. 13, 170–179 (2019).

    Article  ADS  Google Scholar 

  39. Purcell, E. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946).

    Google Scholar 

  40. Rodriguez, A. W., Capasso, F. & Johnson, S. G. The Casimir effect in microstructured geometries. Nat. Photon. 5, 211–221 (2011).

    Article  Google Scholar 

  41. Volokitin, A. & Persson, B. N. Near-field radiative heat transfer and noncontact friction. Rev. Mod. Phys. 79, 1291 (2007).

    Article  ADS  Google Scholar 

  42. Basov, D., Fogler, M. & De Abajo, F. G. Polaritons in van der Waals materials. Science 354, eaag1992 (2016).

    Article  Google Scholar 

  43. Kaminer, I. et al. Efficient plasmonic emission by the quantum čerenkov effect from hot carriers in graphene. Nat. Commun. 7, ncomms11880 (2016).

    Article  ADS  Google Scholar 

  44. Kippenberg, T. J., Gaeta, A. L., Lipson, M. & Gorodetsky, M. L. Dissipative Kerr solitons in optical microresonators. Science 361, eaan8083 (2018).

  45. Brasch, V. et al. Photonic chip–based optical frequency comb using soliton Cherenkov radiation. Science 351, 357–360 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Herr, T. et al. Temporal solitons in optical microresonators. Nat. Photon. 8, 145–152 (2014).

    Article  ADS  Google Scholar 

  47. Herr, T. et al. Mode spectrum and temporal soliton formation in optical microresonators. Phys. Rev. Lett. 113, 123901 (2014).

    Article  ADS  Google Scholar 

  48. Pfeiffer, M. H. et al. Octave-spanning dissipative Kerr soliton frequency combs in Si3N4 microresonators. Optica 4, 684–691 (2017).

    Article  ADS  Google Scholar 

  49. Guidry, M. A., Lukin, D. M., Yang, K. Y., Trivedi, R. & Vučković, J. Quantum optics of soliton microcombs. Preprint at https://arxiv.org/abs/2103.10517 (2021).

  50. Henstridge, M. et al. Synchrotron radiation from an accelerating light pulse. Science 362, 439–442 (2018).

    Article  ADS  Google Scholar 

  51. Siviloglou, G., Broky, J., Dogariu, A. & Christodoulides, D. Observation of accelerating airy beams. Phys. Rev. Lett. 99, 213901 (2007).

    Article  ADS  Google Scholar 

  52. Leykam, D. & Chong, Y. D. Edge solitons in nonlinear-photonic topological insulators. Phys. Rev. Lett. 117, 143901 (2016).

    Article  ADS  Google Scholar 

  53. Shih, M.-f, Segev, M. & Salamo, G. Three-dimensional spiraling of interacting spatial solitons. Phys. Rev. Lett. 78, 2551 (1997).

    Article  ADS  Google Scholar 

  54. Feinberg, G. Particles that go faster than light. Sci. Am. 222, 68–81 (1970).

    Article  Google Scholar 

  55. Feigenbaum, E. & Orenstein, M. Plasmon-soliton. Opt. Lett. 32, 674–676 (2007).

    Article  ADS  Google Scholar 

  56. Liu, X., Qian, L. & Wise, F. Generation of optical spatiotemporal solitons. Phys. Rev. Lett. 82, 4631 (1999).

    Article  ADS  Google Scholar 

  57. Panagiotopoulos, P., Whalen, P., Kolesik, M. & Moloney, J. V. Super high power mid-infrared femtosecond light bullet. Nat. Photon. 9, 543–548 (2015).

    Article  ADS  Google Scholar 

  58. Kozák, M., Eckstein, T., Schönenberger, N. & Hommelhoff, P. Inelastic ponderomotive scattering of electrons at a high-intensity optical travelling wave in vacuum. Nat. Phys. 14, 121–125 (2018).

    Article  Google Scholar 

  59. Talebi, N. & Lienau, C. Interference between quantum paths in coherent Kapitza–Dirac effect. New J. Phys. 21, 093016 (2019).

    Article  ADS  Google Scholar 

  60. Skorobogatiy, M. & Joannopoulos, J. Rigid vibrations of a photonic crystal and induced interband transitions. Phys. Rev. B 61, 5293 (2000).

    Article  ADS  Google Scholar 

  61. Jablan, M., Buljan, H. & Soljačić, M. Plasmonics in graphene at infrared frequencies. Phys. Rev. B 80, 245435 (2009).

    Article  ADS  Google Scholar 

  62. Schützhold, R., Plunien, G. & Soff, G. Quantum radiation in external background fields. Phys. Rev. A 58, 1783 (1998).

    Article  ADS  Google Scholar 

  63. Scheel, S. & Buhmann, S. Y. Macroscopic quantum electrodynamics—concepts and applications. Acta Phys. Slov. 58, 675–809 (2008).

    ADS  Google Scholar 

  64. Rivera, N. & Kaminer, I. Light–matter interactions with photonic quasiparticles. Nat. Rev. Phys. 2, 538–561 (2020).

    Article  Google Scholar 

  65. Sloan, J., Rivera, N., Joannopoulos, J. D. & Soljačić, M. Casimir light in dispersive nanophotonics. Phys. Rev. Lett. 127, 053603 (2021).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank Y. Salamin and I. Kaminer for helpful discussions. This material is based on work supported in part by the Defense Advanced Research Projects Agency (DARPA) under agreement no. HR00112090081. This work is supported in part by the US Army Research Office through the Institute for Soldier Nanotechnologies under award no. W911NF-18-2-0048. This material is also based on work supported by the Air Force Office of Scientific Research under award no. FA9550-20-1-0115. J.S. was supported in part by the Department of Defense NDSEG fellowship no. F-1730184536. N.R. was supported by the Department of Energy Fellowship DE-FG02-97ER25308.

Author information

Authors and Affiliations

Authors

Contributions

J.S. conceived the idea for the project. J.S. and N.R. performed the calculations and analysed the results. M.S. and J.D.J. supervised the work. J.S. wrote the manuscript with input from all the authors.

Corresponding author

Correspondence to Jamison Sloan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review informationNature Physics thanks the anonymous reviewers for their contribution to the peer review of this work

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Fig. 1 and derivation of results.

Source data

Source Data Fig. 3

Cartesian plot data for Fig. 3.

Source Data Fig. 4

Cartesian plot data for Fig. 4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sloan, J., Rivera, N., Joannopoulos, J.D. et al. Controlling two-photon emission from superluminal and accelerating index perturbations. Nat. Phys. 18, 67–74 (2022). https://doi.org/10.1038/s41567-021-01428-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-021-01428-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing