Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spectrally periodic pulses for enhancement of optical nonlinear effects

Abstract

Nonlinear optical effects are typically weak and enhancement techniques are often required for practical applications. Here we introduce a method to enhance such effects by engineering the linear dispersion, which can be used in addition to existing methods. This allows us to generate a family of highly complex pulses consisting of several, equally spaced spectral components that are nonlinearly bound and propagate as a single unit. Our theory shows that this leads to an enhancement of the effective nonlinear parameter that increases with the number of frequency components. We experimentally demonstrate an enhancement factor of up to 3.5 in a mode-locked fibre laser that incorporates an intracavity spectral pulse shaper, with scope for achieving even higher enhancements. Our approach enables the generation of low-energy ultrashort pulses that nonetheless exhibit strong nonlinear effects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Linear dispersion relations and corresponding numerical solutions.
Fig. 2: Characterization of solitons with two frequency components.
Fig. 3: Experimental measurements of spectrally periodic solitons for J = 2, 3, 4 and 5.
Fig. 4: Nonlinear enhancement factor \({{{{\mathcal{E}}}}}_{J}\).

Similar content being viewed by others

Data availability

Source data are provided with this paper. The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Boyd, R. W. Nonlinear Optics (Academic Press, 2008).

  2. Keller, U. Recent developments in compact ultrafast lasers. Nature 424, 831–838 (2003).

    Article  Google Scholar 

  3. Ono, M. et al. Ultrafast and energy-efficient all-optical switching with graphene-loaded deep-subwavelength plasmonic waveguides. Nat. Photon. 14, 37–43 (2020).

    Article  Google Scholar 

  4. Willner, A. E., Khaleghi, S., Chitgarha, M. R. & Yilmaz, O. F. All-optical signal processing. J. Light. Technol. 32, 660–680 (2014).

    Article  Google Scholar 

  5. Langrock, C., Kumar, S., McGeehan, J. E., Willner, A. E. & Fejer, M. M. All-optical signal processing using χ(2) nonlinearities in guided-wave devices. J. Light. Technol. 24, 2579–2592 (2006).

    Article  ADS  Google Scholar 

  6. Galili, M. et al. Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing. Opt. Express 17, 2182–2187 (2009).

    Article  Google Scholar 

  7. Zipfel, W. R., Williams, R. M. & Webb, W. W. Nonlinear magic: multiphoton microscopy in the biosciences. Nat. Biotechnol. 21, 1369–1377 (2003).

    Article  Google Scholar 

  8. George, P. A. et al. Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination dynamics in epitaxial graphene. Nano Lett. 8, 4248–4251 (2008).

    Article  ADS  Google Scholar 

  9. Kaiser, W. & Garrett, C. G. B. Two-photon excitation in CaF2:Eu2+. Phys. Rev. Lett. 7, 229–231 (1961).

    Article  Google Scholar 

  10. Franken, P. A., Hill, A. E., Peters, C. W. & Weinreich, G. Generation of optical harmonics. Phys. Rev. Lett. 7, 118 (1961).

    Article  ADS  Google Scholar 

  11. Eggleton, B. J., Luther-Davies, B. & Richardson, K. Chalcogenide photonics. Nat. Photon. 5, 141–148 (2011).

    Article  Google Scholar 

  12. Zhang, H. et al. Z-scan measurement of the nonlinear refractive index of graphene. Opt. Lett. 11, 1856–1858 (2012).

    Article  ADS  Google Scholar 

  13. Couairon, A. & Mysyrowicz, A. Femtosecond filamentation in transparent media. Phys. Rep. 441, 47–189 (2007).

    Article  Google Scholar 

  14. Feng, Y., Taylor, L. R. & Calia, D. B. 150 W highly-efficient Raman fiber laser. Opt. Express 17, 23678–23683 (2009).

    Article  ADS  Google Scholar 

  15. Birks, T. A., Wadsworth, W. J. & Russell, P. S. J. Supercontinuum generation in tapered fibers. Opt. Lett. 25, 1415–1417 (2000).

    Article  Google Scholar 

  16. Salem, R. et al. Signal regeneration using low-power four-wave mixing on silicon chip. Nat. Photon. 2, 35–38 (2008).

    Article  Google Scholar 

  17. Baba, T. Slow light in photonic crystals. Nat. Photon. 2, 465–473 (2008).

    Article  Google Scholar 

  18. Westbrook, P. S., Her, T., Eggleton, B. J., Hunsche, S. & Raybon, G. Measurement of pulse degradation using all-optical 2R regenerator. Electron. Lett. 38, 1193–1194 (2002).

    Article  Google Scholar 

  19. Denschlag, J. et al. Generating solitons by phase engineering of a Bose-Einstein condensate. Science 287, 97–101 (2000).

  20. Shin, Y. et al. Atom interferometry with Bose-Einstein condensates in a double-well potential. Phys. Rev. Lett. 92, 050405 (2004).

    Article  ADS  Google Scholar 

  21. Ferrando, A., Silvestre, E., Miret, J. J. & Andrés, P. Nearly zero ultraflattened dispersion in photonic crystal fibers. Opt. Lett. 25, 790–792 (2000).

    Article  ADS  Google Scholar 

  22. Zhang, L. et al. Silicon waveguide with four zero-dispersion wavelengths and its application in on-chip octave-spanning supercontinuum generation. Opt. Express 20, 1685–1690 (2012).

    Article  ADS  Google Scholar 

  23. Moille, G., Li, Q., Kim, S., Westly, D. & Srinivasan, K. Phased-locked two-color single soliton microcombs in dispersion-engineered Si3N4 resonators. Opt. Lett. 43, 2772–2775 (2018).

    Article  Google Scholar 

  24. Runge, A. F. J., Hudson, D. D., Tam, K. K. K., de Sterke, C. M. & Blanco-Redondo, A. The pure-quartic soliton laser. Nat. Photon. 14, 492–497 (2020).

    Article  Google Scholar 

  25. Dorrer, C. & Kang, I. Simultaneous temporal characterization of telecommunication optical pulses and modulators by use of spectrograms. Opt. Lett. 27, 1315–1317 (2002).

    Article  Google Scholar 

  26. Blanco-Redondo, A. et al. Pure-quartic solitons. Nat. Commun. 7, 10427 (2016).

    Article  ADS  Google Scholar 

  27. Keusters, D. et al. Relative-phase ambiguities in measurements of ultrashort pulses with well-separated multiple frequency components. J. Opt. Soc. Am. B 20, 2226–2237 (2003).

    Article  Google Scholar 

  28. Tam, K. K. K., Alexander, T. J., Blanco-Redondo, A. & de Sterke, C. M. Generalized dispersion Kerr solitons. Phys. Rev. A 101, 043822 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  29. Agrawal, G. P. Nonlinear Fiber Optics (Academic Press, 1995).

  30. Tam, K. K. K., Alexander, T. J., Blanco-Redondo, A. & de Sterke, C. M. Stationary and dynamical properties of pure-quartic solitons. Opt. Lett. 44, 3306–3309 (2019).

    Article  Google Scholar 

  31. Turitsyn, S. K., Bale, B. G. & Fedoruk, M. P. Dispersion-managed solitons in fibre systems and lasers. Phys. Rep. 521, 135–203 (2012).

    Article  Google Scholar 

  32. Dodd, R. K., Eilbeck, J. C., Gibbon, J. D. and Morris, H. C. Solitons and Nonlinear Wave Equations Ch. 8 (Academic Press, 1982).

  33. Hu, G. et al. Asynchronous and synchronous dual-wavelength pulse generation in a passively mode-locked fiber laser with a mode-locker. Opt. Lett. 42, 4942–4945 (2017).

    Article  Google Scholar 

  34. Zhang, X. et al. Design of a dual-channel modelocked fiber laser that avoids multi-pulsing. Opt. Express 27, 14173–14183 (2019).

    ADS  Google Scholar 

  35. Sova, R. M., Kim, C.-S. & Kang, J. U. Tunable dual-wavelength all-PM fiber ring laser. IEEE Photon. Technol. Lett. 14, 287–289 (2002).

    Article  Google Scholar 

  36. Sugavanam, S. et al. Multiwavelength generation in a random distributed feedback fiber laser using an all fiber Lyot filter. Opt. Express 22, 2839–2844 (2014).

    Article  Google Scholar 

  37. Fermann, M. E., Haberl, F., Hofer, M. & Hochreiter, H. Nonlinear amplifying loop mirror. Opt. Lett. 15, 752–754 (1990).

    Article  ADS  Google Scholar 

  38. Quiroga-Teixeiro, M., Clausen, C. B., Sørensen, M. P., Christiansen, P. L. & Andrekson, P. A. Passive mode locking by dissipative four-wave mixing. J. Opt. Soc. Am. B 15, 1315–1321 (1998).

    Article  Google Scholar 

  39. Schröder, J., Coen, S., Sylvestre, T. & Eggleton, B. J. Dark and bright pulse passive mode-locked laser with in-cavity pulse-shaper. Opt. Express 18, 22715–22721 (2010).

    ADS  Google Scholar 

  40. Melchert, O. et al. Soliton molecules with two frequencies. Phys. Rev. Lett. 132, 243905 (2019).

    Article  ADS  Google Scholar 

  41. Melchert, O., Yulin, A. & Demircan, A. Dynamics of localized dissipative structures in a generalized Lugiato–Lefever model with negative quartic group-velocity dispersion. Opt. Lett. 45, 2764–2767 (2020).

    Article  Google Scholar 

  42. Luo, R., Liang, H. & Lin, Q. Multicolor cavity soliton. Opt. Express 24, 16777–16787 (2016).

    Article  ADS  Google Scholar 

  43. Satsuma, J. & Yajima, N. B. Initial value problems of one-dimensional self-modulation of nonlinear waves in dispersive media. Prog. Theor. Phys. Suppl. 55, 284–306 (1974).

    Article  MathSciNet  Google Scholar 

  44. Richardson, D. J., Nilsson, J. & Clarkson, W. A. High power fiber lasers: current status and future perspectives. J. Opt. Soc. Am. B 27, B63–B92 (2010).

    Article  Google Scholar 

  45. Richardson, D. J., Nilsson, J. & Clarkson, W. A. Sapphire-derived all-glass optical fibres. Nat. Photon. 6, 627–633 (2012).

    Article  Google Scholar 

  46. Moille, G. et al. Ultra-broadband soliton microcomb through synthetic dispersion. Preprint at https://arxiv.org/abs/2102.00301 (2021).

  47. Baron, A. et al. Light localization induced enhancement of third order nonlinearities in a GaAs photonic crystal waveguide. Opt. Express 17, 552–557 (2009).

    Article  ADS  Google Scholar 

  48. Inoue, K., Oda, H., Ikeda, N. & Asakawa, K. Enhanced third-order nonlinear effects in slowlight photonic-crystal slab waveguides of linedefect. Opt. Express 17, 7206–7216 (2009).

    Article  Google Scholar 

  49. Oktem, B., Ülgüdür, C. & Ilday, F. Ö. Soliton–similariton fibre laser. Nat. Photon. 4, 307–311 (2010).

    Article  Google Scholar 

  50. Woodward, R. I. Dispersion engineering of mode-locked fibre lasers. J. Opt. 20, 033002 (2018).

    Article  ADS  Google Scholar 

  51. Yang, J. Newton-conjugate-gradient methods for solitary wave computations. J. Comput. Phys. 228, 7007–7024 (2009).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

General: We thank K. K. K. Tam for fruitful discussions. Funding: J.P.L., A.F.J.R., D.D.H., A.B.-R. and C.M.d.S. are supported by the Australian Research Council (ARC) Discovery Project (DP180102234) and the Asian Office of Aerospace R&D (AOARD) (grant no. FA2386-19-1-4067).

Author information

Authors and Affiliations

Authors

Contributions

A.F.J.R., D.D.H. and A.B.-R. designed the experiment. J.P.L. performed the experiments and numerical simulations. J.P.L., A.F.J.R., T.J.A. and C.M.d.S. carried out the theoretical analysis. C.M.d.S. supervised the overall project. All the authors contributed to interpretation of the data and wrote the manuscript.

Corresponding author

Correspondence to Antoine F. J. Runge.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks Alejandro Aceves, Thibaut Sylvestre and the other, anonymous, reviewer(s) for their contribution to the peer review of this work

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6, Discussion and Tables 1 and 2.

Source data

Source Data Fig. 1

Source data.

Source Data Fig. 2

Source data.

Source Data Fig. 3

Source data.

Source Data Fig. 4

Source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lourdesamy, J.P., Runge, A.F.J., Alexander, T.J. et al. Spectrally periodic pulses for enhancement of optical nonlinear effects. Nat. Phys. 18, 59–66 (2022). https://doi.org/10.1038/s41567-021-01400-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-021-01400-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing