Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Industry outlook of perovskite quantum dots for display applications

Subjects

Perovskite quantum dots have been proven promising for photonic and optoelectronic applications, particularly, as bright and narrow band emitters for display technology. Despite the advantageous properties, the stability issues have to be resolved to unleash the full industrial potential of perovskite quantum dots in display technology.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The comparison of band structure, synthetic methods, publications, and applied patents of CdSe, InP and perovskite QDs.
Fig. 2: The comparison of conventional QDs (CdSe and InP) and PQDs towards different display applications.
Fig. 3: The in-situ fabrication methodology, and the corresponding products, LCD backlight unit, aging tests, and TV demons.

References

  1. Kovalenko, M. V. et al. ACS Nano 9, 1012–1057 (2015).

    Article  CAS  Google Scholar 

  2. Efros, A. L. & Brus, L. E. ACS Nano 15, 6192–6210 (2021).

    Article  CAS  Google Scholar 

  3. García de Arquer, F. P. et al. Science 373, eaaz8541 (2021).

    Article  Google Scholar 

  4. Shirasaki, Y., Supran, G. J., Bawendi, M. G. & Bulović, V. Nat. Photonics 7, 13–23 (2013).

    Article  CAS  Google Scholar 

  5. Ji, H. et al. Chinese Optics 15, 132–143 (2022).

    Google Scholar 

  6. Hu, Z. et al. Nanoscale 12, 2103–2110 (2020).

    Article  CAS  Google Scholar 

  7. Xuan, T. et al. J. Phys. Chem. Lett. 11, 5184–5191 (2020).

    Article  CAS  Google Scholar 

  8. Kim, B. H. et al. Nano Letters 15, 969–973 (2015).

    Article  CAS  Google Scholar 

  9. Dai, X., Deng, Y., Peng, X. & Jin, Y. Adv. Mater. 29, 1607022 (2017).

    Article  Google Scholar 

  10. Moon, H., Lee, C., Lee, W., Kim, J. & Chae, H. Adv. Mater. 31, 1804294 (2019).

    Article  Google Scholar 

  11. Steckel, J. S. et al. Dig. Tech. Pap. SID Int. Symp. 45, 130–133 (2014).

    Article  Google Scholar 

  12. Protesescu, L. et al. Nano Letters 15, 3692–3696 (2015).

    Article  CAS  Google Scholar 

  13. Zhang, F. et al. ACS Nano 9, 4533–4542 (2015).

    Article  CAS  Google Scholar 

  14. Dey, A. et al. ACS Nano 15, 10775–10981 (2021).

    Article  CAS  Google Scholar 

  15. Zhou, Q. et al. Adv. Mater. 28, 9163–9168 (2016).

    Article  CAS  Google Scholar 

  16. Wang, Y. N. et al. Adv. Mater. 28, 10710–10717 (2016).

    Article  CAS  Google Scholar 

  17. Lin, J. et al. ACS Energy Lett. 6, 519–528 (2021).

    Article  CAS  Google Scholar 

  18. Yang, J. N. et al. J. Am. Chem. Soc. 143, 19928–19937 (2021).

    Article  CAS  Google Scholar 

  19. Huang, L. et al. Chem. Mater. 33, 1799–1810 (2021).

    Article  CAS  Google Scholar 

  20. Zhang, W. et al. Adv. Func. Mater. 30, 2005303 (2020).

    Article  CAS  Google Scholar 

  21. Maes, J. et al. J. Phys. Chem. Lett. 9, 3093–3097 (2018).

    Article  CAS  Google Scholar 

  22. Li, J., Chen, J., Shen, Y. & Peng, X. Nano Res. 11, 3991–4004 (2018).

    Article  CAS  Google Scholar 

  23. Talapin, D. V. et al. J. Phys. Chem. B 106, 12659–12663 (2002).

    Article  CAS  Google Scholar 

  24. Chen, W. Y., He, Q. Y. & He, Z. Y. et al. ACS Sustain. Chem. Eng. 10, 5333–5340 (2022).

    Article  CAS  Google Scholar 

  25. Yuan, F. L., Zheng, X. P. & Johnston, A. et al. Sci. Adv. 6, eabb0253 (2020).

    Article  CAS  Google Scholar 

  26. Cheng, S. J. & Zhong, H. Z. J. Phys. Chem. Lett. 13, 2281–2290 (2022).

    Article  CAS  Google Scholar 

  27. Liu, Y., Chen, T. & Jin, Z. et al. Nat. Commun. 13, 1338 (2022).

    Article  CAS  Google Scholar 

  28. Abdi-Jalebi, M., Andaji-Garmaroudi, Z. & Cacovich, S. et al. Nature 555, 497–501 (2018).

    Article  CAS  Google Scholar 

  29. Li, F. et al. Adv. Funct. Mater. 31, 2008211 (2021).

    Article  CAS  Google Scholar 

  30. Zhan, W. et al. ACS Photonics 8, 765–770 (2021).

    Article  CAS  Google Scholar 

  31. Sun, W. C. et al. Nanoscale 14, 5994–5998 (2022).

    Article  CAS  Google Scholar 

  32. Akkerman, Q. A. et al. Nature Mater. 17, 394–405 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the funding support by the National Key R & D Program (No. 2017YFB0404600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haizheng Zhong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Raffaella Buonsanti and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Xg., Ji, H., Yan, X. et al. Industry outlook of perovskite quantum dots for display applications. Nat. Nanotechnol. 17, 813–816 (2022). https://doi.org/10.1038/s41565-022-01163-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-022-01163-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing