Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

A roadmap for molecular thermoelectricity

Molecules have the potential to act as sharp energy filters for electrical currents and could thereby outperform other materials considered for thermoelectric energy conversion. Yet, there is a gap between theoretical predictions and practical implementations in molecular thermoelectricity, and this research roadmap may guide the transition from academic research to valuable technology.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Working principle of molecular junctions for thermoelectric applications.
Fig. 2: Simple depiction of the use areas and constraints of molecular thermal energy converters (TECs) for harvesting (left) and cooling (right) applications.

References

  1. Aviram, A. J. Am. Chem. Soc. 110, 5687–5692 (1988).

    Article  CAS  Google Scholar 

  2. Wei, J. et al. J. Mater. Sci. 55, 12642–12704 (2020).

    Article  CAS  Google Scholar 

  3. Lv, H. Y., Liu, H. J., Shi, J., Tang, X. F. & Uher, C. J. Mater. Chem. A 1, 6831–6838 (2013).

    Article  CAS  Google Scholar 

  4. Gehring, P. et al. Nat. Nanotechnol. 16, 426–430 (2021).

    Article  CAS  Google Scholar 

  5. Liu, W., Kim, H. S., Jie, Q. & Ren, Z. Scr. Mater. 111, 3–9 (2016).

    Article  CAS  Google Scholar 

  6. Cui, L., Miao, R., Jiang, C., Meyhofer, E. & Reddy, P. J. Chem. Phys. 146, 092201 (2017).

    Article  Google Scholar 

  7. Nozariasbmarz, A. et al. iScience 23, 101340 (2020).

    Article  CAS  Google Scholar 

  8. Famili, M., Grace, I., Sadeghi, H. & Lambert, C. J. ChemPhysChem 18, 1234–1241 (2017).

    Article  CAS  Google Scholar 

  9. Markussen, T. J. Chem. Phys. 139, 244101 (2013).

    Article  Google Scholar 

  10. Klöckner, J. C., Cuevas, J. C. & Pauly, F. Phys. Rev. B 96, 1–11 (2017).

    Google Scholar 

  11. Sadeghi, H. J. Phys. Chem. C 123, 12556–12562 (2019).

    Article  CAS  Google Scholar 

  12. Love, J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G. & Whitesides, G. M. Chem. Rev. 105, 1103–1170 (2005).

    Article  CAS  Google Scholar 

  13. Wang, R. Y., Segalman, R. A. & Majumdar, A. Appl. Phys. Lett. 89, 2004–2007 (2006).

    Google Scholar 

  14. Wang, X. et al. J. Am. Chem. Soc. 142, 8555–8560 (2020).

    Article  CAS  Google Scholar 

  15. Kloppstech, K. et al. Nat. Commun. 8, 14475 (2017).

    Article  CAS  Google Scholar 

  16. Cui, L. et al. Nat. Commun. 8, 14479 (2017).

    Article  CAS  Google Scholar 

  17. El Abbassi, M. et al. Nat. Nanotechnol. 14, 957–961 (2019).

    Article  CAS  Google Scholar 

  18. Xin, N. et al. Nat. Rev. Phys. 1, 211–230 (2019).

    Article  Google Scholar 

  19. Broughton, W. R., Maxwell, A. S. & Sims, G. D. NPL Report MAT 99 (NPL, 2021); https://eprintspublications.npl.co.uk/9068/1/MAT%2099.pdf

  20. Plota, A. & Masek, A. Materials 13, 1–25 (2020).

    Article  Google Scholar 

  21. Liao, J. et al. Chem. Soc. Rev. 44, 999–1014 (2015).

    Article  CAS  Google Scholar 

  22. Vining, C. B. Nat. Mater. 8, 83–85 (2009).

    Article  CAS  Google Scholar 

  23. Thielen, M., Sigrist, L., Magno, M., Hierold, C. & Benini, L. Energy Convers. Manag. 131, 44–54 (2017).

    Article  Google Scholar 

  24. Narducci, D. J. Phys. Energy 1, 024001 (2019).

    Article  CAS  Google Scholar 

  25. Bell, L. E. J. Electron. Mater. 38, 1344–1349 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge funding by the European Commission H2020-FETOPEN projects ‘EFINED’, grant agreement no. 766853, and ‘QuIET’, grant agreement no. 767187. This document reflects the opinion of the authors and not necessarily the opinion of the IBM corporation, the EU commission or the QuIET and EFINED consortium members.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Gotsmann.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gemma, A., Gotsmann, B. A roadmap for molecular thermoelectricity. Nat. Nanotechnol. 16, 1299–1301 (2021). https://doi.org/10.1038/s41565-021-01012-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-021-01012-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing