Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Free-space direct nanoscale 3D printing of metals and alloys enabled by two-photon decomposition and ultrafast optical trapping

Abstract

Nanoscale three-dimensional (3D) printing of metals and alloys has faced challenges in speed, miniaturization and deficiency in material properties. Traditional nanomanufacturing relies on lithographic methods with material constraints, limited resolution and slow layer-by-layer processing. This work introduces polymer-free techniques using two-photon decomposition and optical force trapping for free-space direct 3D printing of metals, metal oxides and multimetallic alloys with resolutions beyond optical limits. This method involves the two-photon decomposition of metal atoms from precursors, rapid assembly into nanoclusters via optical forces and ultrafast laser sintering, yielding dense, smooth nanostructures. Enhanced near-field optical forces from laser-induced localized surface plasmon resonance facilitate nanocluster aggregation. Our approach eliminates the need for organic materials, layer-by-layer printing and complex post-processing. Printed Mo nanowires show an excellent mechanical performance, closely resembling the behaviour of single crystals, while Mo–Co–W alloy nanowires outperform Mo nanowires. This innovation promises the customizable 3D nanoprinting of high-quality metals and metal oxides, impacting nanoelectronics, nanorobotics and advanced chip manufacturing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Process scheme, mechanism, simulation and demonstration of the 3D nanoprinting process and structures.
Fig. 2: Characterization of printed metals, alloy and metal oxides.
Fig. 3: Linear and curved 3D nanostructures.
Fig. 4: The in situ mechanical test of Co lattices, Mo nanowires and alloy nanowires.

Similar content being viewed by others

Data availability

The data that support the findings of this study are present in the paper and/or in the Supplementary Information. Additional data related to the paper are available from the corresponding author upon request.

References

  1. Zheng, X. Y. et al. Multiscale metallic metamaterials. Nat. Mater. 15, 1100–1106 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Blasco, E. et al. Fabrication of conductive 3D gold-containing microstructures via direct laser writing. Adv. Mater. 28, 3592–3595 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Ren, Y. et al. Synthesis of orthogonally assembled 3D cross-stacked metal oxide semiconducting nanowires. Nat. Mater. 19, 203–211 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Kalinin, S. V. & Spaldin, N. A. Functional ion defects in transition metal oxides. Science 341, 858–859 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Rothschild, M. Projection optical lithography. Mater. Today 8, 18–24 (2005).

    Article  CAS  Google Scholar 

  6. Kim, F. et al. Direct ink writing of three-dimensional thermoelectric microarchitectures. Nat. Electron. 4, 579–587 (2021).

    Article  CAS  Google Scholar 

  7. Park, Y. G., An, H. S., Kim, J. Y. & Park, J. U. High-resolution, reconfigurable printing of liquid metals with three-dimensional structures. Sci. Adv. 5, aaw2844 (2019).

    Article  Google Scholar 

  8. Visser, C. W. et al. Toward 3D printing of pure metals by laser-induced forward transfer. Adv. Mater. 27, 4087–4092 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Seol, S. K. et al. Electrodeposition-based 3D printing of metallic microarchitectures with controlled internal structures. Small 11, 3896–3902 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Madden, J. D. & Hunter, I. W. Three-dimensional microfabrication by localized electrochemical deposition. J. Microelectromec. Syst. 5, 24–32 (1996).

    Article  CAS  Google Scholar 

  11. Xu, J. K., Ren, W. F., Lian, Z. X., Yu, P. & Yu, H. D. A review: development of the maskless localized electrochemical deposition technology. Int. J. Adv. Manuf. Technol. 110, 1731–1757 (2020).

    Article  Google Scholar 

  12. El-Giar, E. M., Said, R. A., Bridges, G. E. & Thomson, D. J. Localized electrochemical deposition of copper microstructures. J. Electrochem. Soc. 147, 586 (2000).

    Article  CAS  Google Scholar 

  13. Ren, W. F. et al. Localized electrodeposition micro additive manufacturing of pure copper microstructures. Int. J. Extrem. Manuf. 4, 015101 (2022).

    Article  Google Scholar 

  14. Reiser, A. et al. Multi-metal electrohydrodynamic redox 3D printing at the submicron scale. Nat. Commun. 10, 1853 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Menetrey, M. et al. Targeted additive micromodulation of grain size in nanocrystalline copper nanostructures by electrohydrodynamic redox 3D printing. Small 18, 2205302 (2022).

    Article  CAS  Google Scholar 

  16. Wang, S., Zhou, Z., Li, B., Wang, C. & Liu, Q. Progresses on new generation laser direct writing technique. Mater. Today Nano 16, 100142 (2021).

    Article  CAS  Google Scholar 

  17. Liu, X. et al. Capillary-force-driven self-assembly of 4D-printed microstructures. Adv. Mater. 33, e2100332 (2021).

    Article  PubMed  Google Scholar 

  18. Ma, Z. C. et al. Femtosecond laser programmed artificial musculoskeletal systems. Nat. Commun. 11, 4536 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Meza, L. R., Das, S. & Greer, J. R. Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science 345, 1322–1326 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Kotz, F. et al. Two-photon polymerization of nanocomposites for the fabrication of transparent fused silica glass microstructures. Adv. Mater. 33, e2006341 (2021).

    Article  PubMed  Google Scholar 

  21. Wen, X. et al. 3D-printed silica with nanoscale resolution. Nat. Mater. 20, 1506–1511 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Cao, Y. Y., Takeyasu, N., Tanaka, T., Duan, X. M. & Kawata, S. 3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction. Small 5, 1144–1148 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Xu, B. B. et al. Flexible nanowiring of metal on nonplanar substrates by femtosecond-laser-induced electroless plating. Small 6, 1762–1766 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Liu, S.-F. et al. 3D nanoprinting of semiconductor quantum dots by photoexcitation-induced chemical bonding. Science 377, 1112–1116 (2022).

    Article  CAS  PubMed  Google Scholar 

  25. Anisimov, S. I., Kapeliovich, B. L. & Perel'man, T. L. Electron emission from metal surfaces exposed to ultrashort laser pulses. Sov. Phys. J. Exp. Theor. Phys. 39, 375–377 (1974).

    Google Scholar 

  26. Buffat, P. & Borel, J. P. Size effect on the melting temperature of gold particles. Phys. Rev. A 13, 2287–2298 (1976).

    Article  CAS  Google Scholar 

  27. Lai, S. L., Guo, J. Y., Petrova, V., Ramanath, G. & Allen, L. H. Size-dependent melting properties of small tin particles: nanocalorimetric measurements. Phys. Rev. Lett. 77, 99–102 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Zhang, M. et al. Size-dependent melting point depression of nanostructures: nanocalorimetric measurements. Phys. Rev. B 62, 10548–10557 (2000).

    Article  CAS  Google Scholar 

  29. Belonoshko, A. B. et al. Molybdenum at high pressure and temperature: melting from another solid phase. Phys. Rev. Lett. 100, 135701 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Das, R., Deo, M., Mukherjee, J. & Rao, M. S. R. Strain induced FCC to BCC structural change in sputtered molybdenum thin films. Surf. Coat. Technol. 353, 292–299 (2018).

    Article  CAS  Google Scholar 

  31. Bosnell, J. R. & Voisey, U. C. The effect of deposition parameters on the structure and resistivity of molybdenum films. Thin Solid Films 6, 107–111 (1970).

    Article  CAS  Google Scholar 

  32. Denbigh, P. N. & Marcus, R. B. Structure of very thin tantalum and molybdenum films. J. Appl. Phys. 37, 4325–4330 (2004).

    Article  Google Scholar 

  33. Wang, S. J. et al. Deformation-induced structural transition in body-centred cubic molybdenum. Nat. Commun. 5, 3433 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Kitakami, O., Sato, H., Shimada, Y., Sato, F. & Tanaka, M. Size effect on the crystal phase of cobalt fine particles. Phys. Rev. B 56, 13849–13854 (1997).

    Article  CAS  Google Scholar 

  35. Shin, D. et al. Comparison of different tungsten precursors for preparation of tungsten nanopowder by RF induction thermal plasma. Int. J. Refract. Met. Hard Mat. 86, 104995 (2020).

    Article  CAS  Google Scholar 

  36. Redel, E., Thomann, R. & Janiak, C. Use of ionic liquids (ILs) for the IL-anion size-dependent formation of Cr, Mo and W nanoparticles from metal carbonyl M(CO)6 precursors. Chem. Commun. 2008, 1789–1791 (2008).

    Article  Google Scholar 

  37. Reiser, A. et al. Metals by micro-scale additive manufacturing: comparison of microstructure and mechanical properties. Adv. Funct. Mater. 30, 1910491 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim, J. Y. & Greer, J. R. Size-dependent mechanical properties of molybdenum nanopillars. Appl. Phys. Lett. 93, 101916 (2008).

    Article  Google Scholar 

  39. Schneider, A. S., Clark, B. G., Frick, C. P., Gruber, P. A. & Arzt, E. Effect of orientation and loading rate on compression behavior of small-scale Mo pillars. Mater. Sci. Eng. A 508, 241–246 (2009).

    Article  Google Scholar 

  40. Huang, L. et al. A new regime for mechanical annealing and strong sample-size strengthening in body centred cubic molybdenum. Nat. Commun. 2, 547 (2011).

    Article  PubMed  Google Scholar 

  41. Lowry, M. B. et al. Achieving the ideal strength in annealed molybdenum nanopillars. Acta Mater. 58, 5160–5167 (2010).

    Article  CAS  Google Scholar 

  42. Oehlerking, F., Stawovy, M. T., Ohm, S. & Imandoust, A. Microstructural characterization and mechanical properties of additively manufactured molybdenum and molybdenum alloys. Int. J. Refract. Met. Hard Mater. 109, 105971 (2022).

    Article  CAS  Google Scholar 

  43. Kim, J.-Y., Jang, D. & Greer, J. R. Crystallographic orientation and size dependence of tension–compression asymmetry in molybdenum nano-pillars. Int. J. Plast. 28, 46–52 (2012).

    Article  CAS  Google Scholar 

  44. Kim, J.-Y., Jang, D. & Greer, J. R. Tensile and compressive behavior of tungsten, molybdenum, tantalum and niobium at the nanoscale. Acta Mater. 58, 2355–2363 (2010).

    Article  CAS  Google Scholar 

  45. Kim, J.-Y. & Greer, J. R. Tensile and compressive behavior of gold and molybdenum single crystals at the nano-scale. Acta Mater. 57, 5245–5253 (2009).

    Article  CAS  Google Scholar 

  46. Chaudhari, P. & Turnbull, D. Structure and properties of metallic glasses. Science 199, 11–21 (1978).

    Article  CAS  PubMed  Google Scholar 

  47. Wang, W. H. The elastic properties, elastic models and elastic perspectives of metallic glasses. Prog. Mater. Sci. 57, 487–656 (2012).

    Article  CAS  Google Scholar 

  48. Chen, N. et al. Formation and properties of Au-based nanograined metallic glasses. Acta Mater. 59, 6433–6440 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Li from the Core Facility of Wuhan University for his assistance with TEM analysis; Y. Zhang from the Core Facility of Wuhan University for her assistance with focused ion beam testing; and engineer X. Ji for the support with the nanomechanical testing at the microscopic in situ mechanics laboratory at the Institute of Water Engineering Sciences at Wuhan University.

Author information

Authors and Affiliations

Authors

Contributions

Y.W. and G.J.C. conceived this study. Y.W. carried out the experimental treatments, material characterization and data analysis. C.Y. carried out data analysis. W.T. carried out the in situ mechanical test. F.L. provided resources. Y.W. and G.J.C. wrote the draught of the paper. G.J.C. supervised the project. All authors discussed the results and commented on the paper. Y.W., C.Y. and W.T. contributed equally to this work.

Corresponding author

Correspondence to Gary J. Cheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Jianchao Ye and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–18 and Discussion.

Supplementary Video 1

Printing video of the spiral array.

Supplementary Video 2

Printing video of the diamond crystal structure.

Supplementary Video 3

Printing video of the triangular truss structure.

Supplementary Video 4

Printing video of the buckyball structure.

Supplementary Video 5

Printing video of the 3D flower structure.

Supplementary Video 6

Real-time video of the compression test on the 3D lattice structure.

Supplementary Video 7

Real-time video of the in situ compression of a Mo nanowire.

Supplementary Video 8

Real-time video of in situ tension of a Mo nanowire.

Supplementary Video 9

Real-time video of in situ tension of an alloy nanowire.

Supplementary Video 10

Printing videos with different irradiation times at single points.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Yi, C., Tian, W. et al. Free-space direct nanoscale 3D printing of metals and alloys enabled by two-photon decomposition and ultrafast optical trapping. Nat. Mater. (2024). https://doi.org/10.1038/s41563-024-01984-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41563-024-01984-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing