Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electric-field-induced multiferroic topological solitons

Abstract

Topologically protected spin whirls in ferromagnets are foreseen as the cart-horse of solitonic information technologies. Nevertheless, the future of skyrmionics may rely on antiferromagnets due to their immunity to dipolar fields, straight motion along the driving force and ultrafast dynamics. While complex topological objects were recently discovered in intrinsic antiferromagnets, mastering their nucleation, stabilization and manipulation with energy-efficient means remains an outstanding challenge. Designing topological polar states in magnetoelectric antiferromagnetic multiferroics would allow one to electrically write, detect and erase topological antiferromagnetic entities. Here we stabilize ferroelectric centre states using a radial electric field in multiferroic BiFeO3 thin films. We show that such polar textures contain flux closures of antiferromagnetic spin cycloids, with distinct antiferromagnetic entities at their cores depending on the electric field polarity. By tuning the epitaxial strain, quadrants of canted antiferromagnetic domains can also be electrically designed. These results open the path to reconfigurable topological states in multiferroic antiferromagnets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Concept of multiferroic topological states.
Fig. 2: Polar maps extracted from PFM.
Fig. 3: Magnetoelectric coupling in ferroelectric centre states written on a (001)-oriented 33-nm-thick BiFeO3 thin film under –0.35% compressive strain.
Fig. 4: Magnetoelectric coupling in ferroelectric centre states written on a (001)-oriented 32-nm-thick BiFeO3 thin film grown under +0.50% tensile strain.

Similar content being viewed by others

Data availability

The data that support this work are available via Zenodo at https://doi.org/10.5281/zenodo.10875991 (ref. 36).

References

  1. Junquera, J. et al. Topological phases in polar oxide nanostructures. Rev. Mod. Phys. 95, 025001 (2023).

    Article  CAS  Google Scholar 

  2. Yadav, A. K. et al. Observation of polar vortices in oxide superlattices. Nature 530, 198–201 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Das, S. et al. Observation of room-temperature polar skyrmions. Nature 568, 368–372 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Zhang, Q. et al. Nanoscale bubble domains and topological transitions in ultrathin ferroelectric films. Adv. Mater. 29, 1702375 (2017).

    Article  Google Scholar 

  5. Han, L. High-density switchable skyrmion-like polar nanodomains integrated on silicon. Nature 603, 63–67 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Kim, K.-E. et al. Configurable topological textures in strain graded ferroelectric nanoplates. Nat. Commun. 9, 403 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ma, J. et al. Controllable conductive readout in self-assembled, topologically confined ferroelectric domain walls. Nat. Nanotechnol. 13, 947–952 (2018).

    Article  PubMed  Google Scholar 

  8. Yang, W. et al. Quasi-one-dimensional metallic conduction channels in exotic ferroelectric topological defects. Nat. Commun. 12, 1306 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li, Z. et al. High-density array of ferroelectric nanodots with robust and reversibly switchable topological domain states. Sci. Adv. 3, e1700919 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Han, M.-J. et al. Shape and surface charge modulation of topological domains in oxide multiferroics. J. Phys. Chem. C 123, 2557–2564 (2019).

    Article  CAS  Google Scholar 

  11. Yang, W. et al. Nonvolatile ferroelectric‐domain‐wall memory embedded in a complex topological domain structure. Adv. Mater. 34, 2107711 (2022).

    Article  CAS  Google Scholar 

  12. Mermin, N. D. The topological theory of defects in ordered media. Rev. Mod. Phys. 51, 591–648 (1979).

    Article  CAS  Google Scholar 

  13. Gross, I. et al. Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer. Nature 549, 252–256 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Sosnowska, I., Neumaier, T. P. & Steichele, E. Spiral magnetic ordering in bismuth ferrite. J. Phys. C Solid State Phys. 15, 4835–4846 (1982).

    Article  CAS  Google Scholar 

  15. Lebeugle, D. et al. Electric-field-induced spin flop in BiFeO3 single crystals at room temperature. Phys. Rev. Lett. 100, 227602 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Burns, S. R., Paull, O., Juraszek, J., Nagarajan, V. & Sando, D. The experimentalist’s guide to the cycloid, or noncollinear antiferromagnetism in epitaxial BiFeO3. Adv. Mater. 32, 2003711 (2020).

    Article  CAS  Google Scholar 

  17. Haykal, A. et al. Antiferromagnetic textures in BiFeO3 controlled by strain and electric field. Nat. Commun. 11, 1704 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhong, H. et al. Quantitative imaging of exotic antiferromagnetic spin cycloids in BiFeO3 thin films. Phys. Rev. Appl. 17, 044051 (2022).

    Article  CAS  Google Scholar 

  19. Finco, A. et al. Imaging topological defects in a noncollinear antiferromagnet. Phys. Rev. Lett. 128, 187201 (2022).

    Article  CAS  PubMed  Google Scholar 

  20. Waterfield Price, N. et al. Electrical switching of magnetic polarity in a multiferroic BiFeO3 device at room temperature. Phys. Rev. Appl. 8, 014033 (2017).

    Article  Google Scholar 

  21. Johnson, R. D. et al. X-Ray imaging and multiferroic coupling of cycloidal magnetic domains in ferroelectric monodomain BiFeO3. Phys. Rev. Lett. 110, 217206 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Waterfield Price, N. et al. Strain engineering a multiferroic monodomain in thin-film BiFeO3. Phys. Rev. Appl. 11, 024035 (2019).

    Article  CAS  Google Scholar 

  23. Thiaville, A., Miltat, J. & Rohart, S. in Magnetic Skyrmions and Their Applications (eds Finocchio, G. & Panagopoulos, C.) 1–30 (Woodhead Publishing, 2021).

  24. Park, M. et al. Three-dimensional ferroelectric domain imaging of epitaxial BiFeO3 thin films using angle-resolved piezoresponse force microscopy. Appl. Phys. Lett. 97, 112907 (2010).

    Article  Google Scholar 

  25. Chen, Z. H., Damodaran, A. R., Xu, R., Lee, S. & Martin, L. W. Effect of “symmetry mismatch” on the domain structure of rhombohedral BiFeO3 thin films. Appl. Phys. Lett. 104, 182908 (2014).

    Article  Google Scholar 

  26. Sando, D. et al. Crafting the magnonic and spintronic response of BiFeO3 films by epitaxial strain. Nat. Mater. 12, 641–646 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Agbelele, A. et al. Strain and magnetic field induced spin-structure transitions in multiferroic BiFeO3. Adv. Mater. 29, 1602327 (2017).

    Article  Google Scholar 

  28. Chauleau, J.-Y., Haltz, E., Carrétéro, C., Fusil, S. & Viret, M. Multi-stimuli manipulation of antiferromagnetic domains assessed by second-harmonic imaging. Nat. Mater. 16, 803–807 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Ederer, C. & Spaldin, N. A. Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Phys. Rev. B 71, 060401 (2005).

    Article  Google Scholar 

  30. Fiebig, M., Lottermoser, T. H., Fröhlich, D., Goltsev, A. V. & Pisarev, R. V. Observation of coupled magnetic and electric domains. Nature 419, 818–820 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Meier, D. et al. Topology and manipulation of multiferroic hybrid domains in MnWO4. Phys. Rev. B 80, 224420 (2009).

    Article  Google Scholar 

  32. Fiebig, M., Lottermoser, T., Meier, D. & Trassin, M. The evolution of multiferroics. Nat. Rev. Mater. 1, 16046 (2016).

    Article  CAS  Google Scholar 

  33. Li, Z. et al. Multiferroic skyrmions in BiFeO3. Phys. Rev. Res. 5, 043109 (2023).

    Article  CAS  Google Scholar 

  34. Fishman, R. S. The microscopic model of BiFeO3. Phys. B 536, 115–117 (2018).

    Article  CAS  Google Scholar 

  35. Abert, C., Selke, G., Kruger, B. & Drews, A. A fast finite-difference method for micromagnetics using the magnetic scalar potential. IEEE Trans. Magn. 48, 1105–1109 (2012).

    Article  Google Scholar 

  36. Chaudron, A. et al. Electric-field induced multiferroic topological solitons. Zenodo https://doi.org/10.5281/zenodo.10875991 (2024).

Download references

Acknowledgements

We are grateful to N. Reyren for fruitful discussions. We are thankful for support from the French Agence Nationale de la Recherche (ANR) through projects TATOO (ANR-21-CE09-0033) and ESR/EquipEx+ programme e-DIAMANT (grant no. ANR-21-ESRE-0031) and from the European Union’s Horizon 2020 research and innovation programme under grant agreements no. 964931 (TSAR) and no. 866267 (EXAFONIS). This work is supported by a public grant overseen by the ANR as part of the ‘Investissements d’Avenir’ programme (Labex NanoSaclay, reference ANR-10-LABX-0035). We also acknowledge the Sesame Ile de France IMAGeSPIN project (no. EX039175).

Author information

Authors and Affiliations

Authors

Contributions

V.G. and S.F. designed the experiments. V.G. coordinated the work. P.D., A.A. and J.F. synthesized the thin films by pulsed laser deposition. S.F. and S.C. fabricated the devices using electron-beam lithography and sputtering deposition. A.C. switched and examined the polar textures using PFM. A.C. investigated the coupled spin textures using scanning NV magnetometry with the help of K.B.; Z.L., J.-Y.C. and M.V. performed the atomic spin simulations. A.F. and V.J. performed the stray field simulations. A.C., S.F. and V.G. wrote the core of the manuscript. All the authors discussed the results and contributed to the manuscript preparation.

Corresponding authors

Correspondence to Stéphane Fusil or Vincent Garcia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Masahito Mochizuki and Paolo Radaelli for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–12 and Note 1.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudron, A., Li, Z., Finco, A. et al. Electric-field-induced multiferroic topological solitons. Nat. Mater. (2024). https://doi.org/10.1038/s41563-024-01890-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41563-024-01890-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing