Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Charge order landscape and competition with superconductivity in kagome metals

Abstract

In the kagome metals AV3Sb5 (A = K, Rb, Cs), three-dimensional charge order is the primary instability that sets the stage for other collective orders to emerge, including unidirectional stripe order, orbital flux order, electronic nematicity and superconductivity. Here, we use high-resolution angle-resolved photoemission spectroscopy to determine the microscopic structure of three-dimensional charge order in AV3Sb5 and its interplay with superconductivity. Our approach is based on identifying an unusual splitting of kagome bands induced by three-dimensional charge order, which provides a sensitive way to refine the spatial charge patterns in neighbouring kagome planes. We found a marked dependence of the three-dimensional charge order structure on composition and doping. The observed difference between CsV3Sb5 and the other compounds potentially underpins the double-dome superconductivity in CsV3(Sb,Sn)5 and the suppression of Tc in KV3Sb5 and RbV3Sb5. Our results provide fresh insights into the rich phase diagram of AV3Sb5.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Possible microscopic structures of the 3D CO in kagome metal AV3Sb5.
Fig. 2: Two distinct types of electronic reconstruction in CsV3Sb5 induced by 3D CO.
Fig. 3: Theoretical calculation of electronic reconstruction in AV3Sb5 and its dependence on the microscopic structure of 3D CO.
Fig. 4: Electronic reconstructions in KV3Sb5, RbV3Sb5 and Sn-doped CsV3Sb5 in the 3D-CO state.
Fig. 5: Phase diagram of the 3D CO in CsV3Sb5–xSnx and its correlation with double-dome superconductivity.

Similar content being viewed by others

Data availability

Data associated with this paper are available on the Harvard Dataverse at https://doi.org/10.7910/DVN/KJRGXU.

References

  1. Ortiz, B. R. et al. New kagome prototype materials: discovery of KV3Sb5, RbV3Sb5, and CsV3Sb5. Phys. Rev. Mater. 3, 94407 (2019).

    Article  CAS  Google Scholar 

  2. Ortiz, B. R. et al. CsV3Sb5: a Z2 topological kagome metal with a superconducting ground state. Phys. Rev. Lett. 125, 247002 (2020).

    Article  CAS  Google Scholar 

  3. Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).

    Article  CAS  Google Scholar 

  4. Si, Q., Yu, R. & Abrahams, E. High-temperature superconductivity in iron pnictides and chalcogenides. Nat. Rev. Mater. 1, 16017 (2016).

    Article  CAS  Google Scholar 

  5. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article  CAS  Google Scholar 

  6. Jiang, Y.-X. et al. Unconventional chiral charge order in kagome superconductor KV3Sb5. Nat. Mater. 20, 1353–1357 (2021).

    Article  CAS  Google Scholar 

  7. Zhao, H. et al. Cascade of correlated electron states in a kagome superconductor CsV3Sb5. Nature 599, 216–221 (2021).

    Article  CAS  Google Scholar 

  8. Shumiya, N. et al. Intrinsic nature of chiral charge order in the kagome superconductor RbV3Sb5. Phys. Rev. B 104, 035131 (2021).

    Article  CAS  Google Scholar 

  9. Li, H. et al. Rotation symmetry breaking in the normal state of a kagome superconductor KV3Sb5. Nat. Phys. https://doi.org/10.1038/s41567-021-01479-7 (2022).

  10. Xiang, Y. et al. Twofold symmetry of c-axis resistivity in topological kagome superconductor CsV3Sb5 with in-plane rotating magnetic field. Nat. Commun. 12, 6727 (2021).

    Article  CAS  Google Scholar 

  11. Yu, L. et al. Evidence of a hidden flux phase in the topological kagome metal CsV3Sb5. Preprint at arXiv https://doi.org/10.48550/arXiv.2107.10714 (2021).

  12. Ortiz, B. R. et al. Superconductivity in the Z2 kagome metal KV3Sb5. Phys. Rev. Mat. 5, 034801 (2021).

    CAS  Google Scholar 

  13. Yin, Q. et al. Superconductivity and normal-state properties of kagome metal RbV3Sb5 single crystals. Chin. Phys. Lett. 38, 037403 (2021).

    Article  CAS  Google Scholar 

  14. Wu, X. et al. Nature of unconventional pairing in the kagome superconductors AV3Sb5 (A = K, Rb, Cs). Phys. Rev. Lett. 127, 177001 (2021).

    Article  CAS  Google Scholar 

  15. Tazai, R., Yamakawa, Y., Onari, S. & Kontani, H. Mechanism of exotic density-wave and beyond-Migdal unconventional superconductivity in kagome metal AV3Sb5 (A = K, Rb, Cs). Sci. Adv. 8, abl4108 (2022).

    Article  Google Scholar 

  16. Zhou, X. et al. Origin of charge density wave in the kagome metal CsV3Sb5 as revealed by optical spectroscopy. Phys. Rev. B 104, L041101 (2021).

    Article  CAS  Google Scholar 

  17. Li, H. et al. Observation of unconventional charge density wave without acoustic phonon anomaly in kagome superconductors AV3Sb5 (A = Rb, Cs). Phys. Rev. X 11, 031050 (2021).

    CAS  Google Scholar 

  18. Nakayama, K. et al. Multiple energy scales and anisotropic energy gap in the charge-density-wave phase of the kagome superconductor CsV3Sb5. Phys. Rev. B 104, L161112 (2021).

    Article  CAS  Google Scholar 

  19. Liu, Z. et al. Charge-density-wave-induced bands renormalization and energy gaps in a kagome superconductor RbV3Sb5. Phys. Rev. X 11, 41010 (2021).

    CAS  Google Scholar 

  20. Kang, M. et al. Twofold van Hove singularity and origin of charge order in topological kagome superconductor CsV3Sb5. Nat. Phys. https://doi.org/10.1038/s41567-021-01451-5 (2022).

  21. Guo, H. M. & Franz, M. Topological insulator on the kagome lattice. Phys. Rev. B 80, 113102 (2009).

    Article  Google Scholar 

  22. Xu, G., Lian, B. & Zhang, S.-C. Intrinsic quantum anomalous hall effect in the kagome lattice Cs2LiMn3F12. Phys. Rev. Lett. 115, 186802 (2015).

    Article  Google Scholar 

  23. Tang, E., Mei, J.-W. & Wen, X.-G. High-temperature fractional quantum Hall states. Phys. Rev. Lett. 106, 236802 (2011).

    Article  Google Scholar 

  24. Yu, S. L. & Li, J. X. Chiral superconducting phase and chiral spin-density-wave phase in a Hubbard model on the kagome lattice. Phys. Rev. B 85, 4–7 (2012).

    Article  Google Scholar 

  25. Kiesel, M. L., Platt, C. & Thomale, R. Unconventional Fermi surface instabilities in the kagome Hubbard model. Phys. Rev. Lett. 110, 126405 (2013).

    Article  Google Scholar 

  26. Wang, W., Li, Z., Xiang, Y. & Wang, Q. Competing electronic orders on kagome lattices at van Hove filling. Phys. Rev. B 87, 115135 (2013).

    Article  Google Scholar 

  27. Tan, H., Liu, Y., Wang, Z. & Yan, B. Charge density waves and electronic properties of superconducting kagome metals. Phys. Rev. Lett. 127, 046401 (2021).

    Article  CAS  Google Scholar 

  28. Christensen, M. H., Birol, T., Andersen, B. M. & Fernandes, R. M. Theory of the charge density wave in AV3Sb5 kagome metals. Phys. Rev. B 104, 214513 (2021).

    Article  CAS  Google Scholar 

  29. Subedi, A. Hexagonal-to-base-centered-orthorhombic 4Q charge density wave order in kagome metals KV3Sb5, RbV3Sb5, and CsV3Sb5. Phys. Rev. Mater. 6, 015001 (2022).

    Article  CAS  Google Scholar 

  30. Liang, Z. et al. Three-dimensional charge density wave and surface-dependent vortex-core states in a kagome superconductor CsV3Sb5. Phys. Rev. X 11, 31026 (2021).

    CAS  Google Scholar 

  31. Ortiz, B. R. et al. Fermi surface mapping and the nature of charge-density-wave order in the kagome superconductor CsV3Sb5. Phys. Rev. X 11, 41030 (2021).

  32. Li, H. et al. Spatial symmetry constraint of charge-ordered kagome superconductor CsV3Sb5. Preprint at arXiv https://doi.org/10.48550/arXiv.2109.03418 (2021).

  33. Ratcliff, N., Hallett, L., Ortiz, B. R., Wilson, S. D. & Harter, J. W. Coherent phonon spectroscopy and interlayer modulation of charge density wave order in the kagome metal CsV3Sb5. Phys. Rev. Mater. 5, L111801 (2021).

    Article  CAS  Google Scholar 

  34. Luo, J. et al. Possible Star-of-David pattern charge density wave with additional modulation in the kagome superconductor CsV3Sb5. npj Quantum Mater. 7, 30 (2022).

  35. Ye, Z., Luo, A., Yin, J.-X., Hasan, M. Z. & Xu, G. Structural instability and charge modulations in the Kagome superconductor AV3Sb5. Preprint at arXiv https://doi.org/10.48550/arXiv.2111.07314 (2021).

  36. Hu, Y. et al. Charge-order-assisted topological surface states and flat bands in the kagome superconductor CsV3Sb5. Sci. Bull. 67, 495–500 (2022).

  37. Luo, H. et al. Electronic nature of charge density wave and electron-phonon coupling in kagome superconductor KV3Sb5. Nat. Commun. 13, 273 (2022).

    Article  CAS  Google Scholar 

  38. Cho, S. et al. Emergence of new van Hove singularities in the charge density wave state of a topological kagome metal RbV3Sb5. Phys. Rev. Lett. 127, 236401 (2021).

    Article  CAS  Google Scholar 

  39. Hu, Y. et al. Rich nature of van Hove singularities in kagome superconductor CsV3Sb5. Nat. Commun. 13, 2220 (2022).

  40. Rossnagel, K. On the origin of charge-density waves in select layered transition-metal dichalcogenides. J. Phys. Condens. Matter 23, 213001 (2011).

  41. Brouet, V. et al. Angle-resolved photoemission study of the evolution of band structure and charge density wave properties in RTe3. Phys. Rev. B 77, 235104 (2008).

    Article  Google Scholar 

  42. Hu, Y. et al. Coexistence of tri-hexagonal and Star-of-David pattern in the charge density wave of the kagome superconductor AV3Sb5. Preprint at arXiv https://doi.org/10.48550/arXiv.2201.06477 (2022).

  43. Chen, K. Y. et al. Double superconducting dome and triple enhancement of Tc in the kagome superconductor CsV3Sb5 under high pressure. Phys. Rev. Lett. 126, 247001 (2021).

    Article  CAS  Google Scholar 

  44. Yu, F. H. et al. Unusual competition of superconductivity and charge-density-wave state in a compressed topological kagome metal. Nat. Commun. 12, 10–15 (2021).

    Google Scholar 

  45. Oey, Y. M. et al. Fermi level tuning and double-dome superconductivity in the kagome metals CsV3Sb5–xSnx. Phys. Rev. Mater. 6, L041801 (2022).

    Article  CAS  Google Scholar 

  46. Du, F. et al. Pressure-induced double superconducting domes and charge instability in the kagome metal KV3Sb5. Phys. Rev. B 103, L220504 (2021).

    Article  CAS  Google Scholar 

  47. Zhu, C. C. et al. Double-dome superconductivity under pressure in the V-based kagome metals AV3Sb5 (A = Rb and K). Phys. Rev. B 105, 094507 (2022).

  48. Oey, Y. M., Kaboudvand, F., Ortiz, B. R., Seshadri, R. & Wilson, S. D. Tuning charge-density wave order and superconductivity in the kagome metals KV3Sb5–xSnx and RbV3Sb5–xSnx. Preprint at arXiv https://doi.org/10.48550/arXiv.2205.06317 (2022).

  49. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  50. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  51. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  52. Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  CAS  Google Scholar 

  53. Togo, A. & Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 108, 1–5 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Air Force Office of Scientific Research Young Investigator Program under grant FA9550-19-1-0063, and by the STC Center for Integrated Quantum Materials (National Science Foundation grant no. DMR-1231319). The work is funded in part by the Gordon and Betty Moore Foundation’s EPiQS Initiative, grant GBMF9070 to J.G.C. The work at Max Planck POSTECH/Korea Research Initiative was supported by the National Research Foundation of Korea funded by the Ministry of Science and ICT, grant nos 2022M3H4A1A04074153 and 2020M3H4A2084417. B.R.O. and S.D.W. were supported by the National Science Foundation through the programme Enabling Quantum Leap: Convergent Accelerated Discovery Foundries for Quantum Materials Science, Engineering and Information (Q-AMASE-i) and the Quantum Foundry at University of California Santa Barbara (DMR-1906325). This research used resources of the Advanced Light Source, a US Department of Energy Office of Science User Facility under contract no. DE-AC02-05CH11231. M.K. acknowledges a Samsung Scholarship from the Samsung Foundation of Culture. B.R.O. acknowledges support from the California NanoSystems Institute through the Elings Fellowship programme.

Author information

Authors and Affiliations

Authors

Contributions

M.K., J.-H.P. and R.C. conceived the project; M.K. and J.Y. performed the ARPES experiments and analysed the resulting data with help from S.H.R., J.K., C.J., A.B. and E.R.; S.F. performed the theoretical calculations with help from E.K. and J.C.; and B.R.O., Y.M.O. and S.D.W. synthesized and characterized the crystals. M.K. and R.C. wrote the manuscript with input from all coauthors.

Corresponding authors

Correspondence to Mingu Kang, Jae-Hoon Park or Riccardo Comin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Fermi surface and overall electronic structure of pristine and Sn-doped AV3Sb5 (A=K, Rb, Cs).

a-d, Fermi surfaces of KV3Sb5, RbV3Sb5, CsV3Sb5 and Sn-doped CsV3Sb5, respectively. e-h, Wide energy-momentum range ARPES spectra of KV3Sb5, RbV3Sb5, CsV3Sb5 and Sn-doped CsV3Sb5, respectively. All data are acquired at the base temperature 6 K, that is in the charge ordered state.

Extended Data Fig. 2 kz dispersion of (K,Rb,Cs)V3Sb5.

a-c, kx-kz map of KV3Sb5, RbV3Sb5, and CsV3Sb5 respectively, acquired at 0.5 eV binding energy. d-f, Corresponding kz-E map acquired at kx=0. The pronounced kz dispersion of the G band is clearly visible in panels d-f from which we determined the inner potential for each sample, 5.4, 4.3, and 7.3 eV, respectively.

Extended Data Fig. 3 Momentum- and energy-distribution-curves highlighting the band splitting in 3D-CO phase.

a-c, Momentum-distribution-curves (MDCs) across the lower K1 Dirac band above (140 K, panel b) and below (6 K, panel c) the 3D-CO transition. The dashed line in panel a marks the region where the MDCs are extracted. The doubling of the lower K1-Dirac band is observed only in the case of CsV3Sb5. d-f, Energy-distribution-curves (EDCs) across the K1 vHs above (140 K, panel e) and below (6 K, panel f) the 3D-CO transition. The dashed line in panel d marks the region where the EDCs are extracted. The doubling of the K1 vHs is universally observed at the low temperature as marked with the arrows in panel f.

Extended Data Fig. 4 Domain-resolved electronic structures of CsV3Sb5 in C2 symmetric 3D-CO phases.

a-c, Domain-resolved dispersion of CsV3Sb5 in the inverse MLL 3D-CO phase. The location of three different k-paths with respect to the C2 rotation axis is schematically displayed above each panel. d-f, Same with a-c but in the MLL phase. Corresponding domain-averaged electronic structures are shown in Fig. 3d, e.

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2, Table 1, Discussion and references.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, M., Fang, S., Yoo, J. et al. Charge order landscape and competition with superconductivity in kagome metals. Nat. Mater. 22, 186–193 (2023). https://doi.org/10.1038/s41563-022-01375-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-022-01375-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing