Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Graphene oxide bulk material reinforced by heterophase platelets with multiscale interface crosslinking

Abstract

Graphene oxide (GO) and reduced GO possess robust mechanical, electrical and chemical properties. Their nanocomposites have been extensively explored for applications in diverse fields. However, due to the high flexibility and weak interlayer interactions of GO nanosheets, the flexural mechanical properties of GO-based composites, especially in bulk materials, are largely constrained, which hinders their performance in practical applications. Here, inspired by the amorphous/crystalline feature of the heterophase within nacreous platelets, we present a centimetre-sized, GO-based bulk material consisting of building blocks of GO and amorphous/crystalline leaf-like MnO2 hexagon nanosheets adhered together with polymer-based crosslinkers. These building blocks are stacked and hot-pressed with further crosslinking between the layers to form a GO/MnO2-based layered (GML) bulk material. The resultant GML bulk material exhibits a flexural strength of 231.2 MPa. Moreover, the material exhibits sufficient fracture toughness and strong impact resistance while being light in weight. Experimental and numerical analyses indicate that the ordered heterophase structure and synergetic crosslinking interactions across multiscale interfaces lead to the superior mechanical properties of the material. These results are expected to provide insights into the design of structural materials and potential applications of high-performance GO-based bulk materials in aerospace, biomedicine and electronics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic illustration of the design and assembly of GML bulk material featuring amorphous/crystalline heterophase platelets and multiscale crosslinked interfaces.
Fig. 2: Characterization of heterophase structure units, typical nanocomposite films and GML bulk material.
Fig. 3: Mechanical properties of layered nanocomposite films.
Fig. 4: Mechanical properties, sharp contact indentation, residual stress fields and microcrack deflection/crack bridging of the GML bulk material.
Fig. 5: Multiple reinforcing mechanisms acting at multiple scales simulated by MD and FE models, impact-resistant properties and comparison of mechanical performance.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the paper and its Supplementary Information. Other supporting data are available from the corresponding authors upon request.

Code availability

The codes or algorithms used to analyse the data reported in this study are available from the corresponding authors upon request.

References

  1. Dikin, D. A. et al. Preparation and characterization of graphene oxide paper. Nature 448, 457–460 (2007).

    Article  CAS  Google Scholar 

  2. Kotov, N. A., Dékány, I. & Fendler, J. H. Ultrathin graphite oxide-polyelectrolyte composites prepared by self-assembly: transition between conductive and non-conductive states. Adv. Mater. 8, 637–641 (1996).

    Article  CAS  Google Scholar 

  3. Joshi, R. K. et al. Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343, 752–754 (2014).

    Article  CAS  Google Scholar 

  4. Yeh, C.-N. et al. Binder-free graphene oxide doughs. Nat. Commun. 10, 422 (2019).

    Article  CAS  Google Scholar 

  5. Xin, G. et al. Highly thermally conductive and mechanically strong graphene fibers. Science 349, 1083–1087 (2015).

    Article  CAS  Google Scholar 

  6. Chang, D. et al. Reversible fusion and fission of graphene oxide-based fibers. Science 372, 614–617 (2021).

    Article  CAS  Google Scholar 

  7. Kovtyukhova, N. I. et al. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem. Mater. 11, 771–778 (1999).

    Article  CAS  Google Scholar 

  8. Zhao, C. et al. Layered nanocomposites by shear-flow-induced alignment of nanosheets. Nature 580, 210–215 (2020).

    Article  CAS  Google Scholar 

  9. An, Z. et al. Bio-inspired borate cross-linking in ultra-stiff graphene oxide thin films. Adv. Mater. 23, 3842–3846 (2011).

    CAS  Google Scholar 

  10. Wang, C. et al. Freeze-casting produces a graphene oxide aerogel with a radial and centrosymmetric structure. ACS Nano 12, 5816–5825 (2018).

    Article  CAS  Google Scholar 

  11. Zhu, C. et al. Highly compressible 3D periodic graphene aerogel microlattices. Nat. Commun. 6, 6926 (2015).

    Article  Google Scholar 

  12. Wang, B. et al. Folding large graphene-on-polymer films yields laminated composites with enhanced mechanical performance. Adv. Mater. 30, 1707449 (2018).

    Article  Google Scholar 

  13. Jia, H. et al. Bioinspired nacre-like GO-based bulk with easy scale-up process and outstanding mechanical properties. Compos. Part A Appl. Sci. Manuf. 132, 105829 (2020).

    Article  CAS  Google Scholar 

  14. Chen, S. M. et al. Superior biomimetic nacreous bulk nanocomposites by a multiscale soft-rigid dual-network interfacial design strategy. Matter 1, 412–427 (2019).

    Article  Google Scholar 

  15. Meyers, M. A., McKittrick, J. & Chen, P. Y. Structural biological materials: critical mechanics–materials connections. Science 339, 773–779 (2013).

    Article  CAS  Google Scholar 

  16. Chen, K. et al. Amorphous alumina nanosheets/polylactic acid artificial nacre. Matter 1, 1385–1398 (2019).

    Article  Google Scholar 

  17. Nassif, N. et al. Amorphous layer around aragonite platelets in nacre. Proc. Natl Acad. Sci. USA 102, 12653–12655 (2005).

    Article  CAS  Google Scholar 

  18. Wegst, U. G. K., Bai, H., Saiz, E., Tomsia, A. P. & Ritchie, R. O. Bioinspired structural materials. Nat. Mater. 14, 23–36 (2015).

    Article  CAS  Google Scholar 

  19. Das, P. et al. Nacre-mimetics with synthetic nanoclays up to ultrahigh aspect ratios. Nat. Commun. 6, 5967 (2015).

    Article  Google Scholar 

  20. Yin, Z., Hannard, F. & Barthelat, F. Impact-resistant nacre-like transparent materials. Science 364, 1260–1263 (2019).

    Article  CAS  Google Scholar 

  21. Bouville, F. et al. Strong, tough and stiff bioinspired ceramics from brittle constituents. Nat. Mater. 13, 508–514 (2014).

    Article  CAS  Google Scholar 

  22. Mao, L. B. et al. Synthetic nacre by predesigned matrix-directed mineralization. Science 354, 107–110 (2016).

    Article  CAS  Google Scholar 

  23. Cantaert, B. et al. Use of amorphous calcium carbonate for the design of new materials. ChemPlusChem 82, 107–120 (2017).

    Article  CAS  Google Scholar 

  24. Gao, H. L. et al. Mass production of bulk artificial nacre with excellent mechanical properties. Nat. Commun. 8, 287 (2017).

    Article  Google Scholar 

  25. Jia, B. et al. Construction of MnO2 artificial leaf with atomic thickness as highly stable battery anodes. Adv. Mater. 32, 1906582 (2020).

    Article  CAS  Google Scholar 

  26. O’Neill, M. A., Eberhard, S., Albersheim, P. & Darvill, A. G. Requirement of borate cross-linking of cell wall rhamnogalacturonan II for Arabidopsis growth. Science 294, 846–849 (2001).

    Article  Google Scholar 

  27. Luo, J. et al. Graphene oxide nanocolloids. J. Am. Chem. Soc. 132, 17667–17669 (2010).

    Article  CAS  Google Scholar 

  28. Park, S. et al. Graphene oxide papers modified by divalent ions-enhancing mechanical properties via chemical cross-linking. ACS Nano 2, 572–578 (2008).

    Article  CAS  Google Scholar 

  29. Wan, S., Li, Y., Mu, J., Aliev, A. E. & Baughman, R. H. Sequentially bridged graphene sheets with high strength, toughness, and electrical conductivity. Proc. Natl Acad. Sci. USA 115, 5359–5364 (2018).

    Article  CAS  Google Scholar 

  30. Claramunt, S. et al. The importance of interbands on the interpretation of the Raman spectrum of graphene oxide. J. Phys. Chem. C 119, 10123–10129 (2015).

    Article  CAS  Google Scholar 

  31. Dong, X., Zhao, Q., Xiao, L., Lu, Q. & Kaplan, D. L. Amorphous silk nanofiber solutions for fabricating silk-based functional materials. Biomacromolecules 17, 3000–3006 (2006).

    Article  Google Scholar 

  32. Amini, S., Tadayon, M., Idapalapati, S. & Miserez, A. The role of quasi-plasticity in the extreme contact damage tolerance of the stomatopod dactyl club. Nat. Mater. 14, 943–950 (2015).

    Article  CAS  Google Scholar 

  33. Li, L. & Ortiz, C. Pervasive nanoscale deformation twinning as a catalyst for efficient energy dissipation in a bioceramic armour. Nat. Mater. 13, 501–507 (2014).

    Article  CAS  Google Scholar 

  34. Heinz, H., Lin, T.-J., Mishra, R. K. & Emami, F. S. Thermodynamically consistent force fields for the assembly of inorganic, organic, and biological nanostructures: the INTERFACE force field. Langmuir 29, 1754–1765 (2013).

    Article  CAS  Google Scholar 

  35. Yeom, B. et al. Abiotic tooth enamel. Nature 543, 95–98 (2017).

    Article  CAS  Google Scholar 

  36. Koester, K. J. & Ritchie, R. O. The true toughness of human cortical bone measured with realistically short cracks. Nat. Mater. 7, 672–677 (2008).

    Article  CAS  Google Scholar 

  37. Kolednik, O., Predan, J., Fischer, F. D. & Fratzl, P. Bioinspired design criteria for damage-resistant materials with periodically varying microstructure. Adv. Funct. Mater. 21, 3634–3641 (2011).

    Article  CAS  Google Scholar 

  38. Morits, M. et al. Toughness and fracture properties in nacre-mimetic clay/polymer nanocomposites. Adv. Funct. Mater. 27, 1605378 (2017).

    Article  Google Scholar 

  39. Wang, L. et al. Microstructure and mechanical properties of nacre-like alumina toughened by graphene oxide. Ceram. Int. 45, 8081–8086 (2019).

    Article  CAS  Google Scholar 

  40. Grossman, M. et al. Hierarchical toughening of nacre-like composites. Adv. Funct. Mater. 29, 1806800 (2019).

    Article  Google Scholar 

  41. Wegst, U. G. K. & Ashby, M. F. The mechanical efficiency of natural materials. Philos. Mag. 84, 2167–2181 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (nos. 51532001, 21905011 and 51772011). We thank J. Huang, L. Ding and X. Liu for performing various tasks in this research. SAXS measurements were supported by Y. Liu from the Testing and Evaluation Center for High-performance Fibres at BUAA.

Author information

Authors and Affiliations

Authors

Contributions

L.G., L.D., X.D., K.C. and X.T. conceived the project and designed experiments. K.C., X.T. and B.J. carried out the design and fabrication of the lamellar composites. X.T., K.C. and B.J. characterized all samples. X.T., J.H. and K.C. performed mechanical testing. K.C., X.T. and J.H. performed in situ tensile tests. L.D. and C.C. carried out FE simulation. X.T. and C.C. compiled the videos. L.G., K.C., X.T., L.D., C.C., X.D., Y.W., B.J., T.-H.X., Y.W. and K.G. drafted the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Leiting Dong, Xuliang Deng or Lin Guo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Lars Berglund and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary materials, preparation and characterization methods, Figs. 1–31, Discussion and Tables 1–7.

Supplementary Video 1

Evolution process of the Von Mises stress nephogram of the nanoscale heterophase reinforcing structure under uniaxial tension mode.

Supplementary Video 2

Evolution process of the Von Mises stress nephogram of the nanoscale heterophase reinforcing structure under three-point bending mode.

Supplementary Video 3

Evolution process of the Von Mises stress nephogram of the lamellar composite structure model under three-point bending mode.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, K., Tang, X., Jia, B. et al. Graphene oxide bulk material reinforced by heterophase platelets with multiscale interface crosslinking. Nat. Mater. 21, 1121–1129 (2022). https://doi.org/10.1038/s41563-022-01292-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-022-01292-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing