Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Effect of crystallite geometries on electrochemical performance of porous intercalation electrodes by multiscale operando investigation

Abstract

Lithium-ion batteries are yet to realize their full promise because of challenges in the design and construction of electrode architectures that allow for their entire interior volumes to be reversibly accessible for ion storage. Electrodes constructed from the same material and with the same specifications, which differ only in terms of dimensions and geometries of the constituent particles, can show surprising differences in polarization, stress accumulation and capacity fade. Here, using operando synchrotron X-ray diffraction and energy dispersive X-ray diffraction (EDXRD), we probe the mechanistic origins of the remarkable particle geometry-dependent modification of lithiation-induced phase transformations in V2O5 as a model phase-transforming cathode. A pronounced modulation of phase coexistence regimes is observed as a function of particle geometry. Specifically, a metastable phase is stabilized for nanometre-sized spherical V2O5 particles, to circumvent the formation of large misfit strains. Spatially resolved EDXRD measurements demonstrate that particle geometries strongly modify the tortuosity of the porous cathode architecture. Greater ion-transport limitations in electrode architectures comprising micrometre-sized platelets result in considerable lithiation heterogeneities across the thickness of the electrode. These insights establish particle geometry-dependent modification of metastable phase regimes and electrode tortuosity as key design principles for realizing the promise of intercalation cathodes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Morphology and electrochemical characterization of bulk and NS V2O5.
Fig. 2: Operando synchrotron XRD measurements.
Fig. 3: Particle geometry dependence of (transient) lithiation phase diagram.
Fig. 4: Mapping spatiotemporal phase evolution across the thickness of an electrode.
Fig. 5: Mapping accumulation of phase heterogeneities using operando synchrotron EDXRD measurements of bulk and NS V2O5 electrodes.
Fig. 6: Mesoscale simulations of potential variation and Li-ion diffusion across the thickness of a composite electrode.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the paper and its Supplementary Information. Source data are provided with this paper. Any other data are available from the corresponding author on reasonable request.

Code availability

All original code scripts have been provided and are freely available.

References

  1. Abakumov, A. M., Fedotov, S. S., Antipov, E. V. & Tarascon, J. M. Solid state chemistry for developing better metal-ion batteries. Nat. Commun. 11, 4976 (2020).

    Article  CAS  Google Scholar 

  2. Manthiram, A. A reflection on lithium-ion battery cathode chemistry. Nat. Commun. 11, 1550 (2020).

    Article  CAS  Google Scholar 

  3. Xie, J. & Lu, Y. C. A retrospective on lithium-ion batteries. Nat. Commun. 11, 2499 (2020).

    Article  CAS  Google Scholar 

  4. Goodenough, J. B. & Park, K. S. The li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013).

    Article  CAS  Google Scholar 

  5. Boebinger, M. G. et al. Spontaneous and reversible hollowing of alloy anode nanocrystals for stable battery cycling. Nat. Nanotechnol. 15, 475–481 (2020).

    Article  CAS  Google Scholar 

  6. Mistry, A., Usseglio-Viretta, F. L. E., Colclasure, A., Smith, K. & Mukherjee, P. P. Fingerprinting redox heterogeneity in electrodes during extreme fast charging. J. Electrochem. Soc. 167, 90542 (2020).

    Article  CAS  Google Scholar 

  7. Lim, J. et al. Origin and hysteresis of lithium compositional spatiodynamics within battery primary particles. Science 353, 566–571 (2016).

    Article  CAS  Google Scholar 

  8. Andrews, J. L. et al. Curvature-induced modification of mechano-electrochemical coupling and nucleation kinetics in a cathode material. Matter 3, 1754–1773 (2020).

    Article  Google Scholar 

  9. Fraggedakis, D. et al. A scaling law to determine phase morphologies during ion intercalation. Energy Environ. Sci. 13, 2142–2152 (2020).

    Article  CAS  Google Scholar 

  10. Zheng, H. et al. Quantitative characterization of the surface evolution for LiNi0.5Co0.2Mn0.3O2/graphite cell during long-term cycling. ACS Appl. Mater. Interfaces 9, 12445–12452 (2017).

    Article  CAS  Google Scholar 

  11. Bazak, J. D., Allen, J. P., Krachkovskiy, S. A. & Goward, G. R. Mapping of lithium-ion battery electrolyte transport properties and limiting currents with in situ MRI. J. Electrochem. Soc. 167, 140518 (2020).

    Article  CAS  Google Scholar 

  12. Siu, C. et al. Enhanced high-rate performance of nanosized single crystal ε-VOPO4 with niobium substitution for lithium-ion batteries. J. Electrochem. Soc. 168, 060519 (2021).

    Article  CAS  Google Scholar 

  13. Wong, A. A., Rubinstein, S. M. & Aziz, M. J. Direct visualization of electrochemical reactions and heterogeneous transport within porous electrodes in operando by fluorescence microscopy. Cell Rep. Phys. Sci. 2, 100388 (2021).

    Article  CAS  Google Scholar 

  14. Steinrück, H.-G. et al. Concentration and velocity profiles in a polymeric lithium-ion battery electrolyte. Energy Environ. Sci. 13, 4312–4321 (2020).

    Article  Google Scholar 

  15. Zhao, Y. et al. A review on modeling of electro-chemo-mechanics in lithium-ion batteries. J. Power Sources 413, 259–283 (2019).

    Article  CAS  Google Scholar 

  16. McDowell, M. T., Cortes, F. J. Q., Thenuwara, A. C. & Lewis, J. A. Toward high-capacity battery anode materials: chemistry and mechanics intertwined. Chem. Mater. 32, 8755–8771 (2020).

    Article  CAS  Google Scholar 

  17. Heenan, T. M. M. et al. Identifying the origins of microstructural defects such as cracking within Ni-rich NMC811 cathode particles for lithium-ion batteries. Adv. Energy Mater. 10, 2002655 (2020).

    Article  CAS  Google Scholar 

  18. Ferraro, M. E., Trembacki, B. L., Brunini, V. E., Noble, D. R. & Roberts, S. A. Electrode mesoscale as a collection of particles: coupled electrochemical and mechanical analysis of NMC cathodes. J. Electrochem. Soc. 167, 13543 (2020).

    Article  Google Scholar 

  19. Whittingham, M. S. Lithium batteries and cathode materials. Chem. Rev. 104, 4271–4301 (2004).

    Article  CAS  Google Scholar 

  20. Yu, Y.-S. et al. Three-dimensional localization of nanoscale battery reactions using soft X-ray tomography. Nat. Commun. 9, 921 (2018).

    Article  Google Scholar 

  21. De Jesus, L. R., Andrews, J. L., Parija, A. & Banerjee, S. Defining diffusion pathways in intercalation cathode materials: some lessons from V2O5 on directing cation traffic. ACS Energy Lett. 3, 915–931 (2018).

    Article  Google Scholar 

  22. Santos, D. A. et al. Bending good beats breaking bad: phase separation patterns in individual cathode particles upon lithiation and delithiation. Mater. Horiz. 7, 3275–3290 (2020).

    Article  CAS  Google Scholar 

  23. Yao, K. P. C., Okasinski, J. S., Kalaga, K., Almer, J. D. & Abraham, D. P. Operando quantification of (de)lithiation behavior of silicon–graphite blended electrodes for lithium-ion batteries. Adv. Energy Mater. 9, 1803380 (2019).

    Article  Google Scholar 

  24. Yao, K. P. C., Okasinski, J. S., Kalaga, K., Shkrob, I. A. & Abraham, D. P. Quantifying lithium concentration gradients in the graphite electrode of Li-ion cells using operando energy dispersive X-ray diffraction. Energy Environ. Sci. 12, 656–665 (2019).

    Article  CAS  Google Scholar 

  25. Bai, Y., Zhao, K., Liu, Y., Stein, P. & Xu, B.-X. A chemo-mechanical grain boundary model and its application to understand the damage of Li-ion battery materials. Scr. Mater. 183, 45–49 (2020).

    Article  CAS  Google Scholar 

  26. Luo, Y. et al. Roadblocks in cation diffusion pathways: implications of phase boundaries for Li-ion diffusivity in an intercalation cathode material. ACS Appl. Mater. Interfaces 10, acsami.8b10604 (2018).

    Article  Google Scholar 

  27. Pan, A., Wu, H. Bin., Yu, L., & Lou, X. W. Template-free synthesis of VO2 hollow microspheres with various interiors and their conversion into V2O5 for lithium-ion batteries. Angew. Chem. Int. Ed. Engl. 52, 2226–2230 (2013).

    Article  CAS  Google Scholar 

  28. Hu, Y.-S. et al. Synthesis and electrode performance of nanostructured V2O5 by using a carbon tube-in-tube as a nanoreactor and an efficient mixed-conducting network. Angew. Chem. Int. Ed. Engl. 48, 210–214 (2009).

    Article  CAS  Google Scholar 

  29. Horrocks, G. A., Likely, M. F., Velazquez, J. M. & Banerjee, S. Finite size effects on the structural progression induced by lithiation of V2O5: a combined diffraction and Raman spectroscopy study. J. Mater. Chem. A 1, 15265–15277 (2013).

    Article  CAS  Google Scholar 

  30. Rozier, P. et al. ε-LixV2O5 bronzes (0.33 ≤ x ≤ 0.64) a joint study by X-ray powder diffraction and 6Li, 7Li MAS NMR. Eur. J. Solid State Inorg. Chem. 33, 1–13 (1996).

    CAS  Google Scholar 

  31. Murphy, D. W., Christian, P. A., DiSalvo, F. J. & Waszczak, J. V. Lithium incorporation by vanadium pentoxide. Inorg. Chem. 18, 2800–2803 (1979).

    Article  CAS  Google Scholar 

  32. Cocciantelli, J. M. et al. On the δ→γ irreversible transformation in Li//V2O5 secondary batteries. Solid State Ion. 78, 143–150 (1995).

    Article  CAS  Google Scholar 

  33. Meulenkamp, E. A., Van Klinken, W. & Schlatmann, A. R. In-situ X-ray diffraction of Li intercalation in sol-gel V2O5 films. Solid State Ion. 126, 235–244 (1999).

    Article  CAS  Google Scholar 

  34. Li, Y. et al. Fluid-enhanced surface diffusion controls intraparticle phase transformations. Nat. Mater. 17, 915–922 (2018).

    Article  CAS  Google Scholar 

  35. De Jesus, L. R. et al. Lithiation across interconnected V2O5 nanoparticle networks. J. Mater. Chem. A 5, 20141–20152 (2017).

    Article  Google Scholar 

  36. Danner, T. et al. Thick electrodes for Li-ion batteries: a model based analysis. J. Power Sources 334, 191–201 (2016).

    Article  CAS  Google Scholar 

  37. Mistry, A. N. & Mukherjee, P. P. Probing spatial coupling of resistive modes in porous intercalation electrodes through impedance spectroscopy. Phys. Chem. Chem. Phys. 21, 3805–3813 (2019).

    Article  CAS  Google Scholar 

  38. Gao, H. et al. Revealing the rate-limiting Li-ion diffusion pathway in ultrathick electrodes for Li-ion batteries. J. Phys. Chem. Lett. 9, 5100–5104 (2018).

    Article  CAS  Google Scholar 

  39. Mistry, A. N., Smith, K. & Mukherjee, P. P. Electrochemistry coupled mesoscale complexations in electrodes lead to thermo-electrochemical extremes. ACS Appl. Mater. Interfaces 10, 28644–28655 (2018).

    Article  CAS  Google Scholar 

  40. Pietsch, P., Ebner, M., Marone, F., Stampanoni, M. & Wood, V. Determining the uncertainty in microstructural parameters extracted from tomographic data. Sustain. Energy Fuels 2, 598–605 (2018).

    Article  CAS  Google Scholar 

  41. Ebner, M., Chung, D.-W., García, R. E. & Wood, V. Tortuosity anisotropy in lithium-ion battery electrodes. Adv. Energy Mater. 4, 1301278 (2014).

    Article  Google Scholar 

  42. Usseglio-Viretta, F. L. E. et al. Resolving the discrepancy in tortuosity factor estimation for Li-ion battery electrodes through micro-macro modeling and experiment. J. Electrochem. Soc. 165, A3403–A3426 (2018).

    Article  CAS  Google Scholar 

  43. Wang, W., Juarez-Robles, D. & Mukherjee, P. P. Electroanalytical quantification of electrolyte transport resistance in porous electrodes. J. Electrochem. Soc. 167, 80510 (2020).

    Article  CAS  Google Scholar 

  44. Stoney, G. G. The tension of metallic films deposited by electrolysis. Proc. R. Soc. Lond. A 82, 172–175 (1909).

    Article  CAS  Google Scholar 

  45. Nix, W. D. Mechanical properties of thin films. Metall. Trans. A 20, 2217 (1989).

    Article  Google Scholar 

  46. Borkiewicz, O. J. et al. The AMPIX electrochemical cell: a versatile apparatus for in situ X-ray scattering and spectroscopic measurements. J. Appl. Crystallogr. 45, 1261–1269 (2012).

    Article  CAS  Google Scholar 

  47. Liu, H. et al. Intergranular cracking as a major cause of long-term capacity fading of layered cathodes. Nano Lett. 17, 3452–3457 (2017).

    Article  CAS  Google Scholar 

  48. Horrocks, G. A. ; et al. Vanadium K-edge X-ray absorption spectroscopy as a probe of the heterogeneous lithiation of V2O5: first-principles modeling and principal component analysis. J. Phys. Chem. C 120, 23922–23932 (2016).

    Article  CAS  Google Scholar 

  49. Borkiewicz, O. J., Wiaderek, K. M., Chupas, P. J. & Chapman, K. W. Best practices for operando battery experiments: influences of X-ray experiment design on observed electrochemical reactivity. J. Phys. Chem. Lett. 6, 2081–2085 (2015).

    Article  CAS  Google Scholar 

  50. Toby, B. H. & Von Dreele, R. B. GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. 46, 544–549 (2013).

    Article  CAS  Google Scholar 

  51. Stein, P. & Xu, B. 3D isogeometric analysis of intercalation-induced stresses in Li-ion battery electrode particles. Comput. Methods Appl. Mech. Eng. 268, 225–244 (2014).

    Article  Google Scholar 

  52. Lundgren, H., Behm, M. & Lindbergh, G. Electrochemical characterization and temperature dependency of mass-transport properties of LiPF6 in EC:DEC. J. Electrochem. Soc. 162, A413–A420 (2014).

    Article  Google Scholar 

  53. Mistry, A. N., Smith, K. & Mukherjee, P. P. Secondary-phase stochastics in lithium-ion battery electrodes. ACS Appl. Mater. Interfaces 10, 6317–6326 (2018).

    Article  CAS  Google Scholar 

  54. Landesfeind, J., Hattendorff, J., Ehrl, A., Wall, W. A. & Gasteiger, H. A. Tortuosity determination of battery electrodes and separators by impedance spectroscopy. J. Electrochem. Soc. 163, A1373 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study is based on work supported by the National Science Foundation (NSF) under DMR 1809866. We also gratefully acknowledge support from award no. A-1978-20190330 from the Welch Foundation. B.-X.X. acknowledges the German Science Foundation (DFG) for funding under project number 398072825. M.P. acknowledges support from NSF under DMR 1944674. K.X. acknowledges X-Grants Initiative at Texas A&M University for support of this work. A.M. gratefully acknowledges support from Argonne National Laboratory. P.P.M. acknowledges financial support in part from the National Science Foundation under grant no. 1805656). This research used resources of the Advanced Photon Source of Argonne National Laboratory under contract no. DE-AC02-06CH11357. Argonne National Laboratory is operated for the US Department of Energy Office of Science by UChicago Argonne. We thank A. Yakovenko for his support at Beamline 17-BM of the APS. We also thank J. Okasinski for his help with experiments at 6-BM of APS. Use of the TAMU Materials Characterization Facility and the Texas A&M Microscopy and Imaging Center is acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Y.L., B.-X.X. and S.B. designed the project. Y.L. performed material synthesis, microscopy experiments, operando X-ray diffraction and EDXRD experiments and data analysis. A.M. designed the mesoscale model. B.-X.X., Y.B. and S.R. contributed to the phase-field simulations. Y.Z. performed MOS experiment and data analysis. K.X., Y.Z. and D.Z. conducted FIB-SEM experiment and 3D reconstruction. S.S. performed EIS fitting and calculated tortuosity. J.V.H. helped with operando X-ray diffraction and EDXRD experiments. A.C.C. helped with operando energy dispersive X-ray diffraction data analysis. L.C. performed TEM measurements. K.W. helped with battery assembly. M.P., P.P.M., B.-X.X. and S.B. supervised the whole project. All authors contributed to writing and editing the manuscript.

Corresponding authors

Correspondence to Partha P. Mukherjee, Bai-Xiang Xu or Sarbajit Banerjee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks Thomas Heenan and Louis Piper for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–18 and Tables 1–10.

Supplementary Video 1

Operando EDXRD data acquired for layers 3–5 with corresponding first discharge/charge profile for bulk V2O5.

Supplementary Video 2

Operando EDXRD data acquired for layers 3–5 with corresponding first discharge/charge profile for NS V2O5.

Supplementary Video 3

3D reconstruction of bulk V2O5 electrode from FIB-SEM images.

Supplementary Video 4

3D reconstruction of NS V2O5 electrode from FIB-SEM images.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., Bai, Y., Mistry, A. et al. Effect of crystallite geometries on electrochemical performance of porous intercalation electrodes by multiscale operando investigation. Nat. Mater. 21, 217–227 (2022). https://doi.org/10.1038/s41563-021-01151-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-021-01151-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing