Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Interface polarization in heterovalent core–shell nanocrystals

Subjects

Abstract

The potential profile and the energy level offset of core–shell heterostructured nanocrystals (h-NCs) determine the photophysical properties and the charge transport characteristics of h-NC solids. However, limited material choices for heavy metal-free III-V–II-VI h-NCs pose challenges in comprehensive control of the potential profile. Herein, we present an approach to such a control by steering dipole densities at the interface of III-V–II-VI h-NCs. The controllable heterovalency at the interface is responsible for interfacial dipole densities that result in the vacuum-level shift, providing an additional knob for the control of optical and electrical characteristics of h-NCs. The synthesis of h-NCs with atomic precision allows us to correlate interfacial dipole moments with the NCs’ photochemical stability and optoelectronic performance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Formation of bond dipoles at the InP–ZnSe interface and their impact on the potential profile of h-NCs.
Fig. 2: Electronic and photophysical characteristics of InP–ZnSe h-NCs for various In:P ratios (that is, for varying interfacial dipole densities, ρ).
Fig. 3: Universal polarization effect at the interface on electronic and optical characteristics of III-V–II-VI h-NCs.
Fig. 4: Impact of the interfacial polarization on transport characteristics of charge carriers across InP–ZnSe heterovalent h-NCs.

Similar content being viewed by others

Data availability

The authors declare that all data supporting this work are contained in graphics displayed in the main text or in supplementary information. Numerical data for figures are available in this repository: Jeong et al., Interface polarization in heterovalent core/shell NCs (Materials Cloud Archive 2021.X, 2021); https://doi.org/10.24435/materialscloud:xk-xk. Source data are provided with this paper. Additional information is available from the corresponding authors on request.

Reference

  1. Brus, L. Electronic wave functions in semiconductor clusters: experiment and theory. J. Phys. Chem. 90, 2555–2560 (1986).

    Article  CAS  Google Scholar 

  2. Ekimov, A. I., Efros, A. L. & Onushchenko, A. A. Quantum size effect in semiconductor microcrystals. Solid State Commun. 56, 921–924 (1985).

    Article  CAS  Google Scholar 

  3. Murray, C. B., Norris, D. J. & Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993).

    Article  CAS  Google Scholar 

  4. Pietryga, J. M. et al. Spectroscopic and device aspects of nanocrystal quantum dots. Chem. Rev. 116, 10513–10622 (2016).

    Article  CAS  Google Scholar 

  5. Park, Y.-S., Lim, J. & Klimov, V. I. Asymmetrically strained quantum dots with non-fluctuating single-dot emission spectra and subthermal room-temperature linewidths. Nat. Mater. 18, 249–255 (2019).

    Article  CAS  Google Scholar 

  6. Colvin, V. L., Schlamp, M. C. & Alivisatos, A. P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370, 354–357 (1994).

    Article  CAS  Google Scholar 

  7. Wang, Y. & Herron, N. Photoconductivity of CdS nanocluster-doped polymers. Chem. Phys. Lett. 200, 71–75 (1992).

    Article  CAS  Google Scholar 

  8. McDonald, S. A. et al. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat. Mater. 4, 138–142 (2005).

    Article  CAS  Google Scholar 

  9. Klimov, V. I. et al. Optical gain and stimulated emission in nanocrystal quantum dots. Science 290, 314 (2000).

    Article  CAS  Google Scholar 

  10. Lim, J., Park, Y.-S. & Klimov, V. I. Optical gain in colloidal quantum dots achieved with direct-current electrical pumping. Nat. Mater. 17, 42–49 (2018).

    Article  CAS  Google Scholar 

  11. Meinardi, F. et al. Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix. Nat. Photonics 8, 392–399 (2014).

    Article  CAS  Google Scholar 

  12. Meinardi, F. et al. Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots. Nat. Nanotechnol. 10, 878–885 (2015).

    Article  CAS  Google Scholar 

  13. Bruchez, M., Moronne, M., Gin, P., Weiss, S. & Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016 (1998).

    Article  CAS  Google Scholar 

  14. Chan, W. C. W. & Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016 (1998).

    Article  CAS  Google Scholar 

  15. Michalet, X. et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005).

    Article  CAS  Google Scholar 

  16. Medintz, I. L., Uyeda, H. T., Goldman, E. R. & Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 4, 435–446 (2005).

    Article  CAS  Google Scholar 

  17. Hines, M. A. & Guyot-Sionnest, P. Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J. Phys. Chem. 100, 468–471 (1996).

    Article  CAS  Google Scholar 

  18. Kim, S., Fisher, B., Eisler, H.-J. & Bawendi, M. Type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures. J. Am. Chem. Soc. 125, 11466–11467 (2003).

    Article  CAS  Google Scholar 

  19. García-Santamaría, F. et al. Suppressed Auger recombination in “giant” nanocrystals boosts optical gain performance. Nano Lett. 9, 3482–3488 (2009).

    Article  Google Scholar 

  20. Haubold, S., Haase, M., Kornowski, A. & Weller, H. Strongly luminescent InP/ZnS core–shell nanoparticles. ChemPhysChem 2, 331–334 (2001).

    Article  CAS  Google Scholar 

  21. Bae, W. K. et al. Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes. Nat. Commun. 4, 2661 (2013).

    Article  Google Scholar 

  22. Yang, Y. et al. High-efficiency light-emitting devices based on quantum dots with tailored nanostructures. Nat. Photonics 9, 259–266 (2015).

    Article  CAS  Google Scholar 

  23. Cao, W. et al. Highly stable QLEDs with improved hole injection via quantum dot structure tailoring. Nat. Commun. 9, 2608 (2018).

    Article  Google Scholar 

  24. Lim, J. et al. Highly efficient cadmium-free quantum dot light-emitting diodes enabled by the direct formation of excitons within InP@ZnSeS quantum dots. ACS Nano 7, 9019–9026 (2013).

    Article  CAS  Google Scholar 

  25. Hahm, D. et al. Design principle for bright, robust, and color-pure InP/ZnSexS1–x/ZnS heterostructures. Chem. Mater. 31, 3476–3484 (2019).

    Article  CAS  Google Scholar 

  26. Won, Y.-H. et al. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 575, 634–638 (2019).

    Article  CAS  Google Scholar 

  27. Hahm, D. et al. Environmentally benign nanocrystals: challenges and future directions. J. Inf. Disp. 20, 61–72 (2019).

    Article  CAS  Google Scholar 

  28. Reiss, P., Carrière, M., Lincheneau, C., Vaure, L. & Tamang, S. Synthesis of semiconductor nanocrystals, focusing on nontoxic and earth-abundant materials. Chem. Rev. 116, 10731–10819 (2016).

    Article  CAS  Google Scholar 

  29. Kley, A. & Neugebauer, J. Atomic and electronic structure of the GaAs/ZnSe(001) interface. Phys. Rev. B. 50, 8616–8628 (1994).

    Article  CAS  Google Scholar 

  30. Tung, R. T. & Kronik, L. Charge density and band offsets at heterovalent semiconductor interfaces. Adv. Theory Simul. 1, 1700001 (2018).

    Article  Google Scholar 

  31. Zehner, R. W., Parsons, B. F., Hsung, R. P. & Sita, L. R. Tuning the work function of gold with self-assembled monolayers derived from X−[C6H4−CC−]nC6H4−SH (n = 0, 1, 2; X = H, F, CH3, CF3, and OCH3). Langmuir 15, 1121–1127 (1999).

    Article  CAS  Google Scholar 

  32. Rusishvili, M., Wippermann, S., Talapin, D. V. & Galli, G. Stoichiometry of the core determines the electronic structure of core–shell III–V/II–VI nanoparticles. Chem. Mater. 32, 9798–9804 (2020).

    Article  CAS  Google Scholar 

  33. Kirkwood, N. et al. Finding and fixing traps in II–VI and III–V colloidal quantum dots: the importance of Z-type ligand passivation. J. Am. Chem. Soc. 140, 15712–15723 (2018).

    Article  CAS  Google Scholar 

  34. Friedfeld, M. R. et al. Effects of Zn2+ and Ga3+ doping on the quantum yield of cluster-derived InP quantum dots. J. Chem. Phys. 151, 194702 (2019).

    Article  Google Scholar 

  35. Rinehart, J. D., Schimpf, A. M., Weaver, A. L., Cohn, A. W. & Gamelin, D. R. Photochemical electronic doping of colloidal CdSe nanocrystals. J. Am. Chem. Soc. 135, 18782–18785 (2013).

    Article  CAS  Google Scholar 

  36. Carroll, G. M., Tsui, E. Y., Brozek, C. K. & Gamelin, D. R. Spectroelectrochemical measurement of surface electrostatic contributions to colloidal CdSe nanocrystal redox potentials. Chem. Mater. 28, 7912–7918 (2016).

    Article  CAS  Google Scholar 

  37. Soreni-Harari, M. et al. Tuning energetic levels in nanocrystal quantum dots through surface manipulations. Nano Lett. 8, 678–684 (2008).

    Article  CAS  Google Scholar 

  38. Yaacobi-Gross, N. et al. Molecular control of quantum-dot internal electric field and its application to CdSe-based solar cells. Nat. Mater. 10, 974–979 (2011).

    Article  CAS  Google Scholar 

  39. Brown, P. R. et al. Energy level modification in lead sulfide quantum dot thin films through ligand exchange. ACS Nano 8, 5863–5872 (2014).

    Article  CAS  Google Scholar 

  40. Chuang, C.-H. M., Brown, P. R., Bulović, V. & Bawendi, M. G. Improved performance and stability in quantum dot solar cells through band alignment engineering. Nat. Mater. 13, 796–801 (2014).

    Article  CAS  Google Scholar 

  41. Kroupa, D. M. et al. Tuning colloidal quantum dot band edge positions through solution-phase surface chemistry modification. Nat. Commun. 8, 15257 (2017).

    Article  CAS  Google Scholar 

  42. Richter, A. F. et al. Fast electron and slow hole relaxation in InP-based colloidal quantum dots. ACS Nano 13, 14408–14415 (2019).

    Article  CAS  Google Scholar 

  43. Cho, E., Jang, H., Lee, J. & Jang, E. Modeling on the size dependent properties of InP quantum dots: a hybrid functional study. Nanotechnology 24, 215201 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

We thank S.M. Park and S. Jeong for the synthesis and characterization of InAs NCs. This was supported by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science, ICT, and Future Planning (nos. 2020R1A2C2011478, 2021M3H4A3A01062964, 2020M3D1A2101319 and 2021M3H4A1A01004332), and Electronics and Telecommunications Research Institute (ETRI) grant funded by the Korean government (no. 20ZB1200, Development of ICT Materials, Components and Equipment Technologies). This research was also supported by Samsung Display.

Author information

Authors and Affiliations

Authors

Contributions

B.G.J., J.H.C., D.H., S.R., D.C.L., K.P., E.H. and W.K.B. conceived the original idea and designed the experiments. B.G.J., J.H.C., D.H., D.S. and J.W.P. conducted synthesis and characterization of NCs and analysed the experimental data. J.H.C., Y.K., K.P. and E.H. carried out the computational calculation. S.R., S.L., M.P. and C.L. fabricated all devices and analysed the data. All authors contributed to the preparation of the paper.

Corresponding authors

Correspondence to Doh C. Lee, Euyheon Hwang or Wan Ki Bae.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–8, Figs. 1–23 and Tables 1–7.

Source data

Source Data Fig. 1

Numerical source data for Fig. 1b.

Source Data Fig. 2

Numerical source data for Fig. 2a,c–e.

Source Data Fig. 3

Numerical source data for Fig. 3b,c.

Source Data Fig. 4

Numerical source data for Fig. 4a,b,e.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, B.G., Chang, J.H., Hahm, D. et al. Interface polarization in heterovalent core–shell nanocrystals. Nat. Mater. 21, 246–252 (2022). https://doi.org/10.1038/s41563-021-01119-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-021-01119-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing