Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Plant diversity enhances ecosystem multifunctionality via multitrophic diversity

Subjects

Abstract

Ecosystem functioning depends on biodiversity at multiple trophic levels, yet relationships between multitrophic diversity and ecosystem multifunctionality have been poorly explored, with studies often focusing on individual trophic levels and functions and on specific ecosystem types. Here, we show that plant diversity can affect ecosystem functioning both directly and by affecting other trophic levels. Using data on 13 trophic groups and 13 ecosystem functions from two large biodiversity experiments—one representing temperate grasslands and the other subtropical forests—we found that plant diversity increases multifunctionality through elevated multitrophic diversity. Across both experiments, the association between multitrophic diversity and multifunctionality was stronger than the relationship between the diversity of individual trophic groups and multifunctionality. Our results also suggest that the role of multitrophic diversity is greater in forests than in grasslands. These findings imply that, to promote sustained ecosystem multifunctionality, conservation planning must consider the diversity of both plants and higher trophic levels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Graphical illustration of framework and hypotheses of this study.
Fig. 2: Effect size of relationships between plant diversity and individual ecosystem functions and multifunctionality, and between plant diversity and the diversity of individual trophic groups and multitrophic diversity.
Fig. 3: Relationships between multitrophic diversity or diversity of individual trophic groups and ecosystem multifunctionality, and between multitrophic diversity or diversity of individual trophic groups and individual ecosystem functions.
Fig. 4: SEMs of plant diversity enhancing multifunctionality through multitrophic diversity or the diversity of multiple above- and belowground trophic groups.

Similar content being viewed by others

Data availability

Biodiversity and ecosystem function data that support the findings of this study are available via Figshare at https://figshare.com/s/91cbc9f9aec78e2dced5 (ref. 81).

References

  1. Ritchie, H. & Roser, M. Land use. Our World in Data https://ourworldindata.org/land-use (2019).

  2. Anthony, M. A., Bender, S. F. & van der Heijden, M. G. A. Enumerating soil biodiversity. Proc. Natl Acad. Sci. USA 120, e2304663120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sachs, J. D., Kroll, C., Lafortune, G., Fuller, G. & Woelm, F. Sustainable Development Report 2022 (Cambridge Univ. Press, 2022).

  4. Jaureguiberry, P. et al. The direct drivers of recent global anthropogenic biodiversity loss. Sci. Adv. 8, eabm9982 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bongaarts, J. The Global Assessment Report on Biodiversity and Ecosystem Services: Summary for Policymakers (IPBES, 2019).

  6. Fijen, T. P. et al. Insect pollination is at least as important for marketable crop yield as plant quality in a seed crop. Ecol. Lett. 21, 1704–1713 (2018).

    Article  PubMed  Google Scholar 

  7. Dainese, M. et al. A global synthesis reveals biodiversity-mediated benefits for crop production. Sci. Adv. 5, eaax0121 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Eisenhauer, N. et al. Ecosystem consequences of invertebrate decline. Curr. Biol. 33, 4538–4547 (2023).

    Article  CAS  PubMed  Google Scholar 

  9. Wang, S. & Brose, U. Biodiversity and ecosystem functioning in food webs: the vertical diversity hypothesis. Ecol. Lett. 21, 9–20 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Poisot, T., Mouquet, N. & Gravel, D. Trophic complementarity drives the biodiversity–ecosystem functioning relationship in food webs. Ecol. Lett. 16, 853–861 (2013).

    Article  PubMed  Google Scholar 

  11. Albert, G., Gauzens, B., Loreau, M., Wang, S. & Brose, U. The hidden role of multi‐trophic interactions in driving diversity–productivity relationships. Ecol. Lett. 25, 405–415 (2022).

    Article  PubMed  Google Scholar 

  12. Thébault, E. & Loreau, M. Food-web constraints on biodiversity–ecosystem functioning relationships. Proc. Natl Acad. Sci. USA 100, 14949–14954 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  13. de Mazancourt, C., Loreau, M. & Abbadie, L. Grazing optimization and nutrient cycling: when do herbivores enhance plant production? Ecology 79, 2242–2252 (1998).

    Article  Google Scholar 

  14. Symstad, A. J. & Tilman, D. Diversity loss, recruitment limitation, and ecosystem functioning: lessons learned from a removal experiment. Oikos 92, 424–435 (2001).

    Article  Google Scholar 

  15. Allan, E. et al. A comparison of the strength of biodiversity effects across multiple functions. Oecologia 173, 223–237 (2013).

    Article  PubMed  Google Scholar 

  16. Duffy, J. E. Biodiversity loss, trophic skew and ecosystem functioning. Ecol. Lett. 6, 680–687 (2003).

    Article  Google Scholar 

  17. Naeem, S. & Li, S. Biodiversity enhances ecosystem reliability. Nature 390, 507–509 (1997).

    Article  CAS  Google Scholar 

  18. Mulder, C. P. H., Huss-Danell, K., Högberg, P. & Joshi, J. Insects affect relationships between plant species richness and ecosystem processes. Ecol. Lett. 2, 237–246 (1999).

    Article  Google Scholar 

  19. Brose, U. & Hillebrand, H. Biodiversity and ecosystem functioning in dynamic landscapes. Phil. Trans. R. Soc. B 371, 20150267 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Balvanera, P. et al. Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol. Lett. 9, 1146–1156 (2006).

    Article  PubMed  Google Scholar 

  21. Huang, Y. et al. Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science 362, 80–83 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Schuldt, A. et al. Biodiversity across trophic levels drives multifunctionality in highly diverse forests. Nat. Commun. 9, 2989 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hautier, Y. et al. Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality. Nat. Ecol. Evol. 2, 50–56 (2018).

    Article  PubMed  Google Scholar 

  24. Soliveres, S. et al. Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature 536, 456–459 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Tilman, D., Lehman, C. L. & Thomson, K. T. Plant diversity and ecosystem productivity: theoretical considerations. Proc. Natl Acad. Sci. USA 94, 1857–1861 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Laforest-Lapointe, I., Paquette, A., Messier, C. & Kembel, S. W. Leaf bacterial diversity mediates plant diversity and ecosystem function relationships. Nature 546, 145–147 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Li, Y. et al. Multitrophic arthropod diversity mediates tree diversity effects on primary productivity. Nat. Ecol. Evol. 7, 832–840 (2023).

    Article  PubMed  Google Scholar 

  29. Buzhdygan, O. Y. et al. Biodiversity increases multitrophic energy use efficiency, flow and storage in grasslands. Nat. Ecol. Evol. 4, 393–405 (2020).

    Article  PubMed  Google Scholar 

  30. Meyer, S. T. et al. Biodiversity–multifunctionality relationships depend on identity and number of measured functions. Nat. Ecol. Evol. 2, 44–49 (2018).

    Article  PubMed  Google Scholar 

  31. Weisser, W. W. et al. Biodiversity effects on ecosystem functioning in a 15-year grassland experiment: patterns, mechanisms, and open questions. Basic Appl. Ecol. 23, 1–73 (2017).

    Article  Google Scholar 

  32. Bruelheide, H. et al. Designing forest biodiversity experiments: general considerations illustrated by a new large experiment in subtropical China. Methods Ecol. Evol. 5, 74–89 (2014).

    Article  Google Scholar 

  33. Maestre, F. T. et al. Plant species richness and ecosystem multifunctionality in global drylands. Science 335, 214–218 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schuldt, A. et al. Multiple plant diversity components drive consumer communities across ecosystems. Nat. Commun. 10, 1460 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Scherber, C. et al. Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 468, 553–556 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. McQueen, D. J., Post, J. R. & Mills, E. L. Trophic relationships in freshwater pelagic ecosystems. Can. J. Fish. Aquat. Sci. 43, 1571–1581 (1986).

    Article  Google Scholar 

  37. Delgado-Baquerizo, M. et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat. Ecol. Evol. 4, 210–220 (2020).

    Article  PubMed  Google Scholar 

  38. Eisenhauer, N. et al. in Mechanisms Underlying the Relationship Between Biodiversity and Ecosystem Function. Advances in Ecological Research Vol. 61, (eds Eisenhauer, N, Bohan, D. A. & Dumbrell A. J.) 1–54 (2019).

  39. Marquard, E. et al. Positive biodiversity–productivity relationship due to increased plant density. J. Ecol. 97, 696–704 (2009).

    Article  Google Scholar 

  40. Lambers, J. H. R., Harpole, W. S., Tilman, D., Knops, J. & Reich, P. B. Mechanisms responsible for the positive diversity–productivity relationship in Minnesota grasslands. Ecol. Lett. 7, 661–668 (2004).

    Article  Google Scholar 

  41. Schnabel, F. et al. Species richness stabilizes productivity via asynchrony and drought-tolerance diversity in a large-scale tree biodiversity experiment. Sci. Adv. 7, eabk1643 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wagg, C. et al. Biodiversity–stability relationships strengthen over time in a long-term grassland experiment. Nat. Commun. 13, 7752 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tilman, D., Reich, P. B. & Knops, J. M. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441, 629–632 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Lange, M. et al. Plant diversity increases soil microbial activity and soil carbon storage. Nat. Commun. 6, 6707 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Bezemer, T. M. et al. Soil community composition drives aboveground plant–herbivore–parasitoid interactions. Ecol. Lett. 8, 652–661 (2005).

    Article  Google Scholar 

  46. Ristok, C. et al. Plant species richness elicits changes in the metabolome of grassland species via soil biotic legacy. J. Ecol. 107, 2240–2254 (2019).

    Article  Google Scholar 

  47. Staab, M. et al. Dear neighbor: trees with extrafloral nectaries facilitate defense and growth of adjacent undefended trees. Ecology 104, e4057 (2023).

    Article  PubMed  Google Scholar 

  48. Lefcheck, J. S. et al. Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats. Nat. Commun. 6, 1–7 (2015).

    Article  Google Scholar 

  49. Stanton, N. The underground in grasslands. Annu. Rev. Ecol. Syst. 19, 573–589 (2003).

    Article  Google Scholar 

  50. Vidal, M. C. & Murphy, S. M. Bottom-up vs. top-down effects on terrestrial insect herbivores: a meta-analysis. Ecol. Lett. 21, 138–150 (2018).

    Article  PubMed  Google Scholar 

  51. Duffy, J. E. et al. The functional role of biodiversity in ecosystems: incorporating trophic complexity. Ecol. Lett. 10, 522–538 (2007).

    Article  PubMed  Google Scholar 

  52. McGrady-Steed, J., Harris, P. M. & Morin, P. J. Biodiversity regulates ecosystem predictability. Nature 390, 162–165 (1997).

    Article  CAS  Google Scholar 

  53. Naeem, S., Thompson, L. J., Lawler, S. P., Lawton, J. H. & Woodfin, R. M. Declining biodiversity can alter the performance of ecosystems. Nature 368, 734–737 (1994).

    Article  Google Scholar 

  54. Schmid, B. in Defining Agroecology (eds Dormann, C. F. et al.) 161–174 (tredition.com, 2023).

  55. Bruno, J. F. & O’Connor, M. I. Cascading effects of predator diversity and omnivory in a marine food web. Ecol. Lett. 8, 1048–1056 (2005).

    Article  Google Scholar 

  56. Byrnes, J. et al. Predator diversity strengthens trophic cascades in kelp forests by modifying herbivore behaviour. Ecol. Lett. 9, 61–71 (2006).

    Article  PubMed  Google Scholar 

  57. Schuldt, A. et al. Carbon–biodiversity relationships in a highly diverse subtropical forest. Glob. Change Biol. 29, 5321–5333 (2023).

    Article  CAS  Google Scholar 

  58. Roscher, C. et al. The role of biodiversity for element cycling and trophic interactions: an experimental approach in a grassland community. Basic Appl. Ecol. 5, 107–121 (2004).

    Article  Google Scholar 

  59. Ebeling, A. et al. Plant diversity effects on arthropods and arthropod-dependent ecosystem functions in a biodiversity experiment. Basic Appl. Ecol. 26, 50–63 (2018).

    Article  Google Scholar 

  60. Rzanny, M. & Voigt, W. Complexity of multitrophic interactions in a grassland ecosystem depends on plant species diversity. J. Anim. Ecol. 81, 614–627 (2012).

    Article  PubMed  Google Scholar 

  61. Cesarz, S. et al. Plant species richness sustains higher trophic levels of soil nematode communities after consecutive environmental perturbations. Oecologia 184, 715–728 (2017).

    Article  PubMed  Google Scholar 

  62. Eisenhauer, N. et al. Plant diversity effects on soil microorganisms support the singular hypothesis. Ecology 91, 485–496 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Wahdan, S. F. M. et al. Organic agricultural practice enhances arbuscular mycorrhizal symbiosis in correspondence to soil warming and altered precipitation patterns. Environ. Microbiol. 23, 6163–6176 (2021).

    Article  PubMed  Google Scholar 

  64. Chen, J.-T. et al. Functional and phylogenetic relationships link predators to plant diversity via trophic and non-trophic pathways. P. Roy. Soc. B-Biol. Sci. 290, 20221658 (2023).

    Google Scholar 

  65. Guo, P.-F. et al. Tree diversity promotes predatory wasps and parasitoids but not pollinator bees in a subtropical experimental forest. Basic Appl. Ecol. 53, 134–142 (2021).

    Article  Google Scholar 

  66. Li, Y. et al. Tree diversity and functional leaf traits drive herbivore-associated microbiomes in subtropical China. Ecol. Evol. 11, 6153–6166 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Skarbek, C. J. et al. A tale of scale: plot but not neighbourhood tree diversity increases leaf litter ant diversity. J. Anim. Ecol. 89, 299–308 (2020).

    Article  PubMed  Google Scholar 

  68. Gan, H. et al. Plants play stronger effects on soil fungal than bacterial communities and co-occurrence network structures in a subtropical tree diversity experiment. Microbiol. Spectr. 10, e00134–00122 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Zhang, N. et al. Tree species richness and fungi in freshly fallen leaf litter: unique patterns of fungal species composition and their implications for enzymatic decomposition. Soil Biol. Biochem. 127, 120–126 (2018).

    Article  CAS  Google Scholar 

  70. Meyer, S. T. et al. Effects of biodiversity strengthen over time as ecosystem functioning declines at low and increases at high biodiversity. Ecosphere 7, e01619 (2016).

    Article  Google Scholar 

  71. Steinbeiss, S. et al. Plant diversity positively affects short-term soil carbon storage in experimental grasslands. Glob. Change Biol. 14, 2937–2949 (2008).

    Article  Google Scholar 

  72. Bongers, F. J. et al. Functional diversity effects on productivity increase with age in a forest biodiversity experiment. Nat. Ecol. Evol. 5, 1594–1603 (2021).

    Article  PubMed  Google Scholar 

  73. Huang, Y. et al. Positive effects of tree species diversity on litterfall quantity and quality along a secondary successional chronosequence in a subtropical forest. J. Plant Ecol. 10, 28–35 (2017).

    Article  Google Scholar 

  74. Schuldt, A., Fornoff, F., Bruelheide, H., Klein, A.-M. & Staab, M. Tree species richness attenuates the positive relationship between mutualistic ant–hemipteran interactions and leaf chewer herbivory. P. Roy. Soc. B-Biol. Sci. 284, 20171489 (2017).

    Google Scholar 

  75. Rutten, G. et al. More diverse tree communities promote foliar fungal pathogen diversity, but decrease infestation rates per tree species, in a subtropical biodiversity experiment. J. Ecol. 109, 2068–2080 (2021).

    Article  Google Scholar 

  76. Allan, E. et al. Interannual variation in land-use intensity enhances grassland multidiversity. Proc. Natl Acad. Sci. USA 111, 308–313 (2014).

    Article  CAS  PubMed  Google Scholar 

  77. Byrnes, J. E. et al. Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions. Methods Ecol. Evol. 5, 111–124 (2014).

    Article  Google Scholar 

  78. Mori, A. S. et al. Low multifunctional redundancy of soil fungal diversity at multiple scales. Ecol. Lett. 19, 249–259 (2016).

    Article  PubMed  Google Scholar 

  79. Finlayson, M. et al. Ecosystems and Human Well-Being: Wetlands and Water. Synthesis (Millennium Ecosystem Assessment, 2005).

  80. Lefcheck, J. S. piecewiseSEM: piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).

    Article  Google Scholar 

  81. Li, Y. & Liu, X. Li et al_plot_level_multidiversity_multitrophicdiversity_data. Figshare https://figshare.com/s/91cbc9f9aec78e2dced5 (2024).

Download references

Acknowledgements

We thank the Jena Experiment consortium and the BEF-China platform for their efforts in maintaining the experiments and the many student helpers and local helpers for taking the measurements. This study was supported by the National Key Research Development Program of China (2022YFF0802300), the National Natural Science Foundation of China (32222055, 32301337 and 32161123003), the research units BEF-China and MultiTroph funded by the German Research Foundation (DFG FOR 891 and 452861007/FOR 5281, respectively), and the DFG-funded international research training group (TreeDí, 319936945/GRK2324). The Jena Experiment was supported by the DFG (FOR 5000). X.L. was funded by the Youth Innovation Promotion Association CAS (2023019). N.E. gratefully acknowledges the support of iDiv, which is funded by the DFG (FZT 118, 202548816 and Ei 862/29-1). A.M.K. was partly funded by a Hedda Anderson Visiting Chair grant.

Author information

Authors and Affiliations

Authors

Contributions

X.L. and K.M. contributed to the conceptualization of the project. Yi Li, A.S., A.E., N.E., Y.H., G.A., C.A., A.A., M. Bonkowski, H.B., M. Bröcher, D.C., J.C., Y.C., J-T.C., M.C., X.D., F.F., G.G., L.G., P.-F.G., A.H., A.K., M.L., S.L., Q.L., Yingbin Li, A.L., S.M., G.O., G.R., T.S., M.D.S., M.S., M.-Q.W., N.Z. and C.-D.Z. contributed to the methodology and investigation. Yi Li and X.L. contributed to the visualization. The writing was led by Yi Li, X.L., A.S., A.E., N.E., B.S., K.M. and D.C., with reviewing and editing contributed to by all authors.

Corresponding author

Correspondence to Xiaojuan Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Lin Jiang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs 1–9, and legends, Tables 1–6 and references.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g., a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Schuldt, A., Ebeling, A. et al. Plant diversity enhances ecosystem multifunctionality via multitrophic diversity. Nat Ecol Evol (2024). https://doi.org/10.1038/s41559-024-02517-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41559-024-02517-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing