Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Environmental memory alters the fitness effects of adaptive mutations in fluctuating environments

Abstract

Evolution in a static laboratory environment often proceeds via large-effect beneficial mutations that may become maladaptive in other environments. Conversely, natural settings require populations to endure environmental fluctuations. A sensible assumption is that the fitness of a lineage in a fluctuating environment is the time average of its fitness over the sequence of static conditions it encounters. However, transitions between conditions may pose entirely new challenges, which could cause deviations from this time average. To test this, we tracked hundreds of thousands of barcoded yeast lineages evolving in static and fluctuating conditions and subsequently isolated 900 mutants for pooled fitness assays in 15 environments. Here we find that fitness in fluctuating environments indeed often deviates from the time average, leading to fitness non-additivity. Moreover, closer examination reveals that fitness in one component of a fluctuating environment is often strongly influenced by the previous component. We show that this environmental memory is especially common for mutants with high variance in fitness across tested environments. We use a simple mathematical model and whole-genome sequencing to propose mechanisms underlying this effect, including lag time evolution and sensing mutations. Our results show that environmental fluctuations impact fitness and suggest that variance in static environments can explain these impacts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fitness assays test for non-additivity in mutants evolved from static and fluctuating environments.
Fig. 2: Non-additivity is common, but it masks even greater fitness changes.
Fig. 3: Fitness in one component of a fluctuating environment influences fitness in the other component.
Fig. 4: Fitness reversals in fluctuating environments are common and recapitulated by a simple model of lag time evolution.
Fig. 5: Environment-sensing mutations are associated with higher fitness variance and memory.

Similar content being viewed by others

Data availability

All sequencing data are deposited in Short Read Archive under BioProject identifier PRJNA1103172. The remaining data are available via GitHub at https://github.com/clare-abreu/environmental_memory. Barcoded yeast strains are available from the authors upon request. Source data are provided with this paper.

Code availability

All code used in this paper is available via GitHub at https://github.com/clare-abreu/environmental_memory.

References

  1. Woods, R., Schneider, D., Winkworth, C. L., Riley, M. A. & Lenski, R. E. Tests of parallel molecular evolution in a long-term experiment with Escherichia coli. Proc. Natl Acad. Sci. USA 103, 9107–9112 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tenaillon, O. et al. The molecular diversity of adaptive convergence. Science 335, 457–461 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Venkataram, S. et al. Development of a comprehensive genotype-to-fitness map of adaptation-driving mutations in yeast. Cell 166, 1585–1596.e22 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Good, B. H., McDonald, M. J., Barrick, J. E., Lenski, R. E. & Desai, M. M. The dynamics of molecular evolution over 60,000 generations. Nature 551, 45–50 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Rudman, S. M. et al. Direct observation of adaptive tracking on ecological time scales in Drosophila. Science 375, eabj7484 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kryazhimskiy, S., Rice, D. P., Jerison, E. R. & Desai, M. M. Global epistasis makes adaptation predictable despite sequence-level stochasticity. Science 344, 1519–1522 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Couce, A. & Tenaillon, O. A. The rule of declining adaptability in microbial evolution experiments. Front. Genet. 6, 99 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kover, P. X. et al. Pleiotropic effects of environment-specific adaptation in Arabidopsis thaliana. New Phytol. 183, 816–825 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Schick, A., Bailey, S. F. & Kassen, R. Evolution of fitness trade-offs in locally adapted populations of Pseudomonas fluorescens. Am. Nat. 186, S48–S59 (2015).

    Article  PubMed  Google Scholar 

  10. Li, Y., Petrov, D. A. & Sherlock, G. Single nucleotide mapping of trait space reveals Pareto fronts that constrain adaptation. Nat. Ecol. Evol. 3, 1539–1551 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Jerison, E. R., Nguyen Ba, A. N., Desai, M. M. & Kryazhimskiy, S. Chance and necessity in the pleiotropic consequences of adaptation for budding yeast. Nat. Ecol. Evol. 4, 601–611 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kinsler, G., Geiler-Samerotte, K. & Petrov, D. A. Fitness variation across subtle environmental perturbations reveals local modularity and global pleiotropy of adaptation. eLife 9, e61271 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bono, L. M., Smith, L. B., Pfennig, D. W. & Burch, C. L. The emergence of performance trade-offs during local adaptation: insights from experimental evolution. Mol. Ecol. 26, 1720–1733 (2017).

    Article  PubMed  Google Scholar 

  14. Cooper, T. F. & Lenski, R. E. Experimental evolution with E. coli in diverse resource environments. I. Fluctuating environments promote divergence of replicate populations. BMC Evol. Biol. 10, 11 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Rodríguez-Verdugo, A. & Ackermann, M. Rapid evolution destabilizes species interactions in a fluctuating environment. ISME J. 15, 450–460 (2021).

    Article  PubMed  Google Scholar 

  16. Salignon, J., Richard, M., Fulcrand, E., Duplus-Bottin, H. & Yvert, G. Genomics of cellular proliferation in periodic environmental fluctuations. Mol. Syst. Biol. 14, e7823 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Boyer, S., Hérissant, L. & Sherlock, G. Adaptation is influenced by the complexity of environmental change during evolution in a dynamic environment. PLoS Genet. 17, e1009314 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Alto, B. W., Wasik, B. R., Morales, N. M. & Turner, P. E. Stochastic temperatures impede RNA virus adaptation. Evolution 67, 969–979 (2013).

    Article  PubMed  Google Scholar 

  19. Fasanello, V. J., Liu, P., Fay, J. C. & Botero, C. A. Fluctuating selection facilitates the discovery of broadly effective but difficult to reach adaptive outcomes in yeast. Evol. Lett. 8, 243–252 (2024).

    Article  PubMed  Google Scholar 

  20. Cvijović, I., Good, B. H., Jerison, E. R. & Desai, M. M. Fate of a mutation in a fluctuating environment. Proc. Natl Acad. Sci. USA 112, E5021–E5028 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sæther, B.-E. & Engen, S. The concept of fitness in fluctuating environments. Trends Ecol. Evol. 30, 273–281 (2015).

    Article  PubMed  Google Scholar 

  22. Ketola, T. & Kristensen, T. N. Experimental approaches for testing if tolerance curves are useful for predicting fitness in fluctuating environments. Front. Ecol. Evol. 5, 129 (2017).

    Article  Google Scholar 

  23. Li, Y. et al. Hidden complexity of yeast adaptation under simple evolutionary conditions. Curr. Biol. 28, 515–525.e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Monod, J. The growth of bacterial cultures. Annu. Rev. Microbiol. 3, 371–394 (1949).

    Article  CAS  Google Scholar 

  25. Siegal, M. L. Shifting sugars and shifting paradigms. PLoS Biol. 13, e1002068 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Escalante-Chong, R. et al. Galactose metabolic genes in yeast respond to a ratio of galactose and glucose. Proc. Natl Acad. Sci. USA 112, 1636–1641 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Basan, M. et al. A universal trade-off between growth and lag in fluctuating environments. Nature 584, 470–474 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Balakrishnan, R., de Silva, R. T., Hwa, T. & Cremer, J. Suboptimal resource allocation in changing environments constrains response and growth in bacteria. Mol. Syst. Biol. 17, e10597 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Acar, M., Mettetal, J. T. & van Oudenaarden, A. Stochastic switching as a survival strategy in fluctuating environments. Nat. Genet. 40, 471–475 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Lambert, G. & Kussell, E. Memory and fitness optimization of bacteria under fluctuating environments. PLoS Genet. 10, e1004556 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kronholm, I. & Ketola, T. Effects of acclimation time and epigenetic mechanisms on growth of Neurospora in fluctuating environments. Heredity 121, 327–341 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Stajic, D., Bank, C. & Gordo, I. Adaptive potential of epigenetic switching during adaptation to fluctuating environments. Genome Biol. Evol. 14, evac065 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Torres-Garcia, S. et al. Epigenetic gene silencing by heterochromatin primes fungal resistance. Nature 585, 453–458 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Leung, C., Grulois, D., Quadrana, L. & Chevin, L.-M. Phenotypic plasticity evolves at multiple biological levels in response to environmental predictability in a long-term experiment with a halotolerant microalga. PLoS Biol. 21, e3001895 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Levy, S. F. et al. Quantitative evolutionary dynamics using high-resolution lineage tracking. Nature 519, 181–186 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. New, A. M. et al. Different levels of catabolite repression optimize growth in stable and variable environments. PLoS Biol. 12, e1001764 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zakrzewska, A. et al. Genome-wide analysis of yeast stress survival and tolerance acquisition to analyze the central trade-off between growth rate and cellular robustness. Mol. Biol. Cell 22, 4435–4446 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dhar, R., Sägesser, R., Weikert, C. & Wagner, A. Yeast adapts to a changing stressful environment by evolving cross-protection and anticipatory gene regulation. Mol. Biol. Evol. 30, 573–588 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Ketola, T. & Saarinen, K. Experimental evolution in fluctuating environments: tolerance measurements at constant temperatures incorrectly predict the ability to tolerate fluctuating temperatures. J. Evol. Biol. 28, 800–806 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Vermeersch, L. et al. On the duration of the microbial lag phase. Curr. Genet. 65, 721–727 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. McDaniel, E. A., Stuecker, T. N., Veluvolu, M., Gasch, A. P. & Lewis, J. A. Independent mechanisms for acquired salt tolerance versus growth resumption induced by mild ethanol pretreatment in Saccharomyces cerevisiae. mSphere 3, e00574-18 (2018).

  42. Rivers, W. Characterizing Aft1/2-Grx3/4 Interaction and the Role of Bol2 During Iron Regulation in Saccharomyces cerevisiae. Senior thesis, Honors College (2019).

  43. Martínez-Pastor, M. T., Perea-García, A. & Puig, S. Mechanisms of iron sensing and regulation in the yeast Saccharomyces cerevisiae. World J. Microbiol. Biotechnol. 33, 75 (2017).

    Article  PubMed  Google Scholar 

  44. IPCC. in Climate Change 2013The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Ch. 14, 1217–1308 (Cambridge University Press, 2014).

  45. Khan, A. I., Dinh, D. M., Schneider, D., Lenski, R. E. & Cooper, T. F. Negative epistasis between beneficial mutations in an evolving bacterial population. Science 332, 1193–1196 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Chou, H.-H., Chiu, H.-C., Delaney, N. F., Segrè, D. & Marx, C. J. Diminishing returns epistasis among beneficial mutations decelerates adaptation. Science 332, 1190–1192 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Reddy, G. & Desai, M. M. Global epistasis emerges from a generic model of a complex trait. eLife 10, e64740 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Diaz-Colunga, J., Skwara, A., Vila, J. C. C., Bajic, D. & Sanchez, A. Global epistasis and the emergence of function in microbial consortia. Cell 187, 3108–3119.e30 (2024).

    Article  CAS  PubMed  Google Scholar 

  49. Violle, C., Pu, Z. & Jiang, L. Experimental demonstration of the importance of competition under disturbance. Proc. Natl Acad. Sci. USA 107, 12925–12929 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Abreu, C. I., Woltz, V. L. A., Friedman, J. & Gore, J. Microbial communities display alternative stable states in a fluctuating environment. PLoS Comput. Biol. 16, e1007934 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yi, X. & Dean, A. M. Bounded population sizes, fluctuating selection and the tempo and mode of coexistence. Proc. Natl Acad. Sci. USA 110, 16945–16950 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Letten, A. D., Dhami, M. K., Ke, P.-J. & Fukami, T. Species coexistence through simultaneous fluctuation-dependent mechanisms. Proc. Natl Acad. Sci. USA 115, 6745–6750 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mukherjee, A. et al. Coexisting ecotypes in long-term evolution emerged from interacting trade-offs. Nat. Commun. 14, 3805 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chesson, P. & Huntly, N. The roles of harsh and fluctuating conditions in the dynamics of ecological communities. Am. Nat. 150, 519–553 (1997).

    Article  CAS  PubMed  Google Scholar 

  55. Gilchrist, C. & Stelkens, R. Aneuploidy in yeast: segregation error or adaptation mechanism? Yeast 36, 525–539 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. Beaumont, H. J. E., Gallie, J., Kost, C., Ferguson, G. C. & Rainey, P. B. Experimental evolution of bet hedging. Nature 462, 90–93 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Bruijning, M., Metcalf, C. J. E., Jongejans, E. & Ayroles, J. F. The evolution of variance control. Trends Ecol. Evol. 35, 22–33 (2020).

    Article  PubMed  Google Scholar 

  58. Kinsler, G. et al. Extreme sensitivity of fitness to environmental conditions: lessons from #1BigBatch. J. Mol. Evol. 91, 293–310 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Venkataram, S. BarcodeCounter2. GitHub https://github.com/sandeepvenkataram/BarcodeCounter2 (2021).

  60. Zhao, L., Liu, Z., Levy, S. F. & Wu, S. Bartender: a fast and accurate clustering algorithm to count barcode reads. Bioinformatics 34, 739–747 (2018).

    Article  CAS  PubMed  Google Scholar 

  61. Li, F., Mahadevan, A. & Sherlock, G. An improved algorithm for inferring mutational parameters from bar-seq evolution experiments. BMC Genom. 24, 246 (2023).

    Article  CAS  Google Scholar 

  62. Kinsler, G., Li, Y., Sherlock, G. J. & Petrov, D. A shift from pleiotropic to modular adaptation revealed by a high-resolution two-step adaptive walk. Preprint at bioRxiv https://doi.org/10.1101/2024.04.17.589938 (2024).

Download references

Acknowledgements

We are grateful to G. Kinsler for patiently training us in the experimental system, as well as for valuable advice about PCR and sequencing, data analysis and whole-genome sequencing analysis. We thank members of the Petrov Lab for helpful comments and suggestions. We thank A. Lyulina for assistance with preliminary experiments; S. Khristich for guidance on molecular biology troubleshooting; K. Xue, K. Solari, K. Schwartz and J. Tarkington for advice on library preparation protocols; and A. Mahadevan for advice on whole-genome sequencing analysis. For additional helpful discussions, we thank Y. Li, B. Good, D. Wong, J. Cremer, J. Gore, M. Dal Bello, M. Dunham and R. Stelkens. Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number F32GM145148 (C.I.A.) and Award Number R35GM118165 (D.A.P.).

Author information

Authors and Affiliations

Authors

Contributions

C.I.A., S.M. and D.A.P. conceived of the study. C.I.A. and S.M. conducted experiments, collected data and performed analyses, and C.I.A., S.M. and D.A.P. interpreted results. C.I.A. analysed the mathematical model. C.I.A. and D.A.P. acquired funding. C.I.A. wrote the original draft paper, and C.I.A., S.M. and D.A.P. reviewed and edited the paper.

Corresponding authors

Correspondence to Clare I. Abreu or Dmitri A. Petrov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Yitzhak Pilpel and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–12 and Discussion.

Reporting Summary

Peer Review File

Source data

Source Data Figs. 2–5

Fitness statistics for all mutants (also available via GitHub).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abreu, C.I., Mathur, S. & Petrov, D.A. Environmental memory alters the fitness effects of adaptive mutations in fluctuating environments. Nat Ecol Evol (2024). https://doi.org/10.1038/s41559-024-02475-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41559-024-02475-9

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology