Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enantioselective construction of stereogenic-at-sulfur(IV) centres via catalytic acyl transfer sulfinylation

Abstract

Chiral sulfur pharmacophores are crucial for drug discovery in bioscience and medicinal chemistry. While the catalytic asymmetric synthesis of sulfoxides and sulfinate esters with stereogenic-at-sulfur(IV) centres is well developed, the synthesis of chiral sulfinamides remains challenging, which has primarily been attributed to the high nucleophilicity and competing reactions of amines. In this study, we have developed an efficient methodology for the catalytic asymmetric synthesis of chiral sulfinamides and sulfinate esters by the sulfinylation of diverse nucleophiles, including aromatic amines and alcohols, using our bifunctional chiral 4-arylpyridine N-oxides as catalysts. The remarkable results are a testament to the efficiency, versatility and broad applicability of the developed synthetic approach, serving as a valuable tool for the synthesis of sulfur pharmacophores. Mechanistic experiments and density functional theory calculations revealed that the initiation and stereocontrol of this reaction are induced by an acyl transfer catalyst. Our research provides an efficient approach for the construction of optically pure sulfur(IV) centres.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Functional chiral S(IV) groups and different strategies to construct S(IV) centres.
Fig. 2: Synthetic transformations of sulfinamides and a sulfinate ester.
Fig. 3: Experimental mechanistic studies.
Fig. 4: Catalytic mechanism.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the main text and the Supplementary Information. The X-ray crystallographic coordinates for the structures reported in this paper have been deposited at the Cambridge Crystallographic Data Centre (CCDC) under deposition numbers 2285509 (4o), 2285510 (6y) and 2311965 (7d). These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

References

  1. Bentley, R. Role of sulfur chirality in the chemical processes of biology. Chem. Soc. Rev. 34, 609–624 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Chinthakindi, P. K. et al. Sulfonimidamides in medicinal and agricultural chemistry. Angew. Chem. Int. Ed. 56, 4100–4109 (2017).

    Article  CAS  Google Scholar 

  3. Mäder, P. & Kattner, L. Sulfoximines as rising stars in modern drug discovery? Current status and perspective on an emerging functional group in medicinal chemistry. J. Med. Chem. 63, 14243–14275 (2020).

    Article  PubMed  Google Scholar 

  4. Yang, G.-F. et al. Synthesis of chiral sulfonimidoyl chloride via desymmetrizing enantioselective hydrolysis. J. Am. Chem. Soc. 145, 5439–5446 (2023).

    Article  CAS  PubMed  Google Scholar 

  5. Otocka, S., Kwiatkowska, M., Madalińska, L. & Kiełbasiński, P. Chiral organosulfur ligands/catalysts with a stereogenic sulfur atom: applications in asymmetric synthesis. Chem. Rev. 117, 4147–4181 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Lücking, U. Neglected sulfur(VI) pharmacophores in drug discovery: exploration of novel chemical space by the interplay of drug design and method development. Org. Chem. Front. 6, 1319–1324 (2019).

    Article  Google Scholar 

  7. Han, Y. et al. Application of sulfoximines in medicinal chemistry from 2013 to 2020. Eur. J. Med. Chem. 209, 112885 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Trost, B. M. & Rao, M. Development of chiral sulfoxide ligands for asymmetric catalysis. Angew. Chem. Int. Ed. 54, 5026–5043 (2015).

    Article  CAS  Google Scholar 

  9. Trost, B. M., Ryan, M. C., Rao, M. & Markovic, T. Z. Construction of enantioenriched [3.1.0] bicycles via a ruthenium-catalyzed asymmetric redox bicycloisomerization reaction. J. Am. Chem. Soc. 136, 17422–17425 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Sedelmeier, J., Hammerer, T. & Bolm, C. C1-Symmetric oxazolinyl sulfoximines as ligands in copper-catalyzed asymmetric Mukaiyama aldol reactions. Org. Lett. 10, 917–920 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Xu, H., Zuend, S. J., Woll, M. G., Tao, Y. & Jacobsen, E. N. Asymmetric cooperative catalysis of strong Brønsted acid-promoted reactions using chiral ureas. Science 327, 986–990 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Han, Z., Krishnamurthy, D., Grover, P., Fang, Q. K. & Senanayake, C. H. Properly designed modular asymmetric synthesis for enantiopure sulfinamide auxiliaries from N-sulfonyl-1,2,3-oxathiazolidine-2-oxide agents. J. Am. Chem. Soc. 124, 7880–7881 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Robak, M. T., Herbage, M. A. & Ellman, J. A. Synthesis and applications of tert-butanesulfinamide. Chem. Rev. 110, 3600–3740 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Cogan, D. A., Liu, G., Kim, K., Backes, B. J. & Ellman, J. A. Catalytic asymmetric oxidation of tert-butyl disulfide. Synthesis of tert-butanesulfinamides, tert-butyl sulfoxides, and tert-butanesulfinimines. J. Am. Chem. Soc. 120, 8011–8019 (1998).

    Article  CAS  Google Scholar 

  15. Han, Z. S. et al. Design and synthesis of chiral oxathiozinone scaffolds: efficient synthesis of hindered enantiopure sulfinamides and sulfinyl ketimines. Angew. Chem. Int. Ed. 52, 6713–6717 (2013).

    Article  CAS  Google Scholar 

  16. Fernández, I., Khiar, N., Llera, J. M. & Alcudia, F. Asymmetric synthesis of alkane- and arenesulfinates of diacetone-d-glucose (DAG): an improved and general route to both enantiomerically pure sulfoxides. J. Org. Chem. 57, 6789–6796 (1992).

    Article  Google Scholar 

  17. Peltier, H. M., Evans, J. W. & Ellman, J. A. Catalytic enantioselective sulfinyl transfer using cinchona alkaloid catalysts. Org. Lett. 7, 1733–1736 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Liu, G., Cogan, D. A. & Ellman, J. A. Catalytic asymmetric synthesis of tert-butanesulfinamide. Application to the asymmetric synthesis of amines. J. Am. Chem. Soc. 119, 9913–9914 (1997).

    Article  CAS  Google Scholar 

  19. Liao, S., Čorić, I., Wang, Q. & List, B. Activation of H2O2 by chiral confined Brønsted acids: a highly enantioselective catalytic sulfoxidation. J. Am. Chem. Soc. 134, 10765–10768 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Zong, L. et al. Bisguanidinium dinuclear oxodiperoxomolybdosulfate ion pair-catalyzed enantioselective sulfoxidation. Nat. Commun. 7, 13455 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ye, X. et al. Enantioselective sulfoxidation catalyzed by a bisguanidinium diphosphatobisperoxotungstate ion pair. Angew. Chem. Int. Ed. 55, 7101–7105 (2016).

    Article  CAS  Google Scholar 

  22. Wang, L., Chen, M., Zhang, P., Li, W. & Zhang, J. Palladium/PC-Phos-catalyzed enantioselective arylation of general sulfenate anions: scope and synthetic applications. J. Am. Chem. Soc. 140, 3467–3473 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Newhouse, T. R., Li, X., Blewett, M. M., Whitehead, C. M. C. & Corey, E. J. A tetradentate ligand for the enantioselective Ti(IV)-promoted oxidation of sulfides to sulfoxides: origin of enantioselectivity. J. Am. Chem. Soc. 134, 17354–17357 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Aota, Y., Maeda, Y., Kano, T. & Maruoka, K. Efficient synthesis of cyclic sulfoximines from N-propargylsulfinamides through sulfur–carbon bond formation. Chem. Eur. J. 25, 15755–15758 (2019).

    Article  CAS  PubMed  Google Scholar 

  25. Aota, Y., Kano, T. & Maruoka, K. Asymmetric synthesis of chiral sulfoximines through the S-alkylation of sulfinamides. Angew. Chem. Int. Ed. 58, 17661–17665 (2019).

    Article  CAS  Google Scholar 

  26. Aota, Y., Kano, T. & Maruoka, K. Asymmetric synthesis of chiral sulfoximines via the S-arylation of sulfinamides. J. Am. Chem. Soc. 141, 19263–19268 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Maeda, Y. et al. Practical asymmetric synthesis of chiral sulfoximines via sulfur-selective alkylation. J. Org. Chem. 87, 3652–3660 (2022).

    Article  CAS  PubMed  Google Scholar 

  28. Zou, X. et al. Strain-enabled S-arylation and S-alkenylation of sulfinamides using arynes and cyclic alkynes. Sci. China Chem. 67, 928–935 (2024).

    Article  CAS  Google Scholar 

  29. Zou, X., Wang, H. & Gao, B. Synthesis of sulfoximines by copper-catalyzed oxidative coupling of sulfinamides and aryl boronic acids. Org. Lett. 25, 7656–7660 (2023).

    Article  CAS  PubMed  Google Scholar 

  30. Bizet, V., Hendriks, C. M. M. & Bolm, C. Sulfur imidations: access to sulfimides and sulfoximines. Chem. Soc. Rev. 44, 3378–3390 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Davies, T. Q. et al. Harnessing sulfinyl nitrenes: a unified one-pot synthesis of sulfoximines and sulfonimidamides. J. Am. Chem. Soc. 142, 15445–15453 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pickford, H. D. et al. Rapid and scalable halosulfonylation of strain-release reagents. Angew. Chem. Int. Ed. 62, e202213508 (2023).

    Article  CAS  Google Scholar 

  33. Ning, Y., Ji, Q., Liao, P., Anderson, E. A. & Bi, X. Silver-catalyzed stereoselective aminosulfonylation of alkynes. Angew. Chem. Int. Ed. 56, 13805–13808 (2017).

    Article  CAS  Google Scholar 

  34. Zenzola, M., Doran, R., Degennaro, L., Luisi, R. & Bull, J. A. Transfer of electrophilic NH using convenient sources of ammonia: direct synthesis of NH sulfoximines from sulfoxides. Angew. Chem. Int. Ed. 55, 7203–7207 (2016).

    Article  CAS  Google Scholar 

  35. Fang, S. et al. Access to S-stereogenic free sulfoximines via bifunctional phosphonium salt-catalyzed desymmetrization of bisphenols. ACS Catal. 11, 13902–13912 (2021).

    Article  CAS  Google Scholar 

  36. Ma, L.-J. et al. Chiral Brønsted-acid-catalyzed asymmetric oxidation of sulfenamide by using H2O2: a versatile access to sulfinamide and sulfoxide with high enantioselectivity. ACS Catal. 9, 1525–1530 (2019).

    Article  CAS  Google Scholar 

  37. Chen, Y., Wu, X., Yang, S. & Zhu, C. Asymmetric radical cyclization of alkenes by stereospecific homolytic substitution of sulfinamides. Angew. Chem. Int. Ed. 61, e202201027 (2022).

    Article  CAS  Google Scholar 

  38. Evans, D. A. et al. Asymmetric synthesis of chiral organosulfur compounds using N-sulfinyloxazolidinones. J. Am. Chem. Soc. 114, 5977–5985 (1992).

    Article  CAS  Google Scholar 

  39. Evans, J. W., Fierman, M. B., Miller, S. J. & Ellman, J. A. Catalytic enantioselective synthesis of sulfinate esters through the dynamic resolution of tert-butanesulfinyl chloride. J. Am. Chem. Soc. 126, 8134–8135 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Shibata, N. et al. Cinchona alkaloid/sulfinyl chloride combinations: enantioselective sulfinylating agents of alcohols. J. Am. Chem. Soc. 127, 1374–1375 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Zhang, X., Ang, E. C. X., Yang, Z., Kee, C. W. & Tan, C.-H. Synthesis of chiral sulfinate esters by asymmetric condensation. Nature 604, 298–303 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Huang, S. et al. Organocatalytic asymmetric deoxygenation of sulfones to access chiral sulfinyl compounds. Nat. Chem. 15, 185–193 (2023).

    Article  CAS  PubMed  Google Scholar 

  43. Wojaczyńska, E. & Wojaczyński, J. Modern stereoselective synthesis of chiral sulfinyl compounds. Chem. Rev. 120, 4578–4611 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wang, M. & Jiang, X. Prospects and challenges in organosulfur chemistry. ACS Sustain. Chem. Eng. 10, 671–677 (2022).

    Article  CAS  Google Scholar 

  45. Senanayake, C. H., Han, Z. & Krishnamurthy, D. in Organosulfur Chemistry in Asymmetric Synthesis (eds Toru, T. & Bolm, C.) 233–264 (Wiley-VCH, 2008).

  46. Malkov, A. V. & Kočovský, P. Chiral N-oxides in asymmetric catalysis. Eur. J. Org. Chem. 29–36 (2007).

  47. Liu, X. H., Lin, L. L. & Feng, X. M. Chiral N,N′-dioxides: new ligands and organocatalysts for catalytic asymmetric reactions. Acc. Chem. Res. 44, 574–587 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Murray, J. I. et al. Kinetic resolution of 2-substituted indolines by N-sulfonylation using an atropisomeric 4-DMAP-N-oxide organocatalyst. Angew. Chem. Int. Ed. 56, 5760–5764 (2017).

    Article  CAS  Google Scholar 

  49. Xie, M.-S. et al. Chiral DMAP-N-oxides as acyl transfer catalysts: design, synthesis, and application in asymmetric Steglich rearrangement. Angew. Chem. Int. Ed. 58, 2839–2843 (2019).

    Article  CAS  Google Scholar 

  50. Xie, M.-S. et al. Rational design of 2-substituted DMAP-N-oxides as acyl transfer catalysts: dynamic kinetic resolution of azlactones. J. Am. Chem. Soc. 142, 19226–19238 (2020).

    Article  CAS  PubMed  Google Scholar 

  51. Xie, M.-S. et al. Chiral 4‑aryl-pyridine-N-oxide nucleophilic catalysts: design, synthesis, and application in acylative dynamic kinetic resolution. ACS Catal. 12, 877–891 (2022).

    Article  CAS  Google Scholar 

  52. Wang, M., Zhang, Z. & Zhang, W. Design, synthesis, and application of chiral bicyclic imidazole catalysts. Acc. Chem. Res. 55, 2708–2727 (2022).

    Article  CAS  PubMed  Google Scholar 

  53. Liu, S. et al. First catalytic enantioselective synthesis of P-stereogenic phosphoramides via kinetic resolution promoted by a chiral bicyclic imidazole nucleophilic catalyst. Tetrahedron Asymmetry 23, 329–332 (2012).

    Article  CAS  Google Scholar 

  54. DiRocco, D. A. et al. A multifunctional catalyst that stereoselectively assembles prodrugs. Science 356, 426–430 (2017).

    Article  CAS  PubMed  Google Scholar 

  55. Lee, S. Y., Murphy, J. M., Ukai, A. & Fu, G. C. Nonenzymatic dynamic kinetic resolution of secondary alcohols via enantioselective acylation: synthetic and mechanistic studies. J. Am. Chem. Soc. 134, 15149–15153 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Joannesse, C. et al. Isothiourea-catalyzed enantioselective carboxy group transfer. Angew. Chem. Int. Ed. 48, 8914–8918 (2009).

    Article  CAS  Google Scholar 

  57. McLaughlin, C. & Smith, A. D. Generation and reactivity of C(1)-ammonium enolates by using isothiourea catalysis. Chem. Eur. J. 27, 1533–1555 (2021).

    Article  CAS  PubMed  Google Scholar 

  58. Piotrowski, D. W. et al. Regio- and enantioselective synthesis of azole hemiaminal esters by Lewis base catalyzed dynamic kinetic resolution. J. Am. Chem. Soc. 138, 4818–4823 (2016).

    Article  CAS  PubMed  Google Scholar 

  59. Zhou, M. et al. Chiral bicyclic imidazole-catalyzed acylative dynamic kinetic resolution for the synthesis of chiral phthalidyl esters. Angew. Chem. Int. Ed. 60, 1641–1645 (2021).

    Article  CAS  Google Scholar 

  60. Worch, C., Atodiresei, I., Raabe, G. & Bolm, C. Synthesis of enantiopure sulfonimidamides and elucidation of their absolute configuration by comparison of measured and calculated CD spectra and X-ray crystal structure determination. Chem. Eur. J. 16, 677–683 (2009).

    Article  Google Scholar 

  61. Steurer, M. & Bolm, C. Synthesis of amino-functionalized sulfonimidamides and their application in the enantioselective Henry reaction. J. Org. Chem. 75, 3301–3310 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the NSFC (grant nos. 22071046, U22A20378 and 21971056) and the Program for Innovative Research Team in Science and Technology at the University of Henan Province (grant nos. 23IRTSTHN003 and 22IRTSTHN003) for financial support. We also thank the Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, the Henan Key Laboratory of Organic Functional Molecules and Drug Innovation and the NMPA Key Laboratory for Research and Evaluation of Innovative Drug for financial support.

Author information

Authors and Affiliations

Authors

Contributions

H.-M.G., M.-S.X. and Y.T. conceived and directed the project. T.W. and H.-L.W. performed the experiments. Y.T. performed the computational studies. H.-M.G. and M.-S.X. supervised the work. M.-S.X. and T.W. co-wrote the original draft of the paper. M.-S.X., Y.T. and H.-M.G. co-wrote the final paper.

Corresponding authors

Correspondence to Yin Tian, Ming-Sheng Xie or Hai-Ming Guo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Choon-Hong Tan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6 and Tables 1–10.

Supplementary Data 1

Cartesian coordinates for the theoretical calculations.

Supplementary Data 2

Crystallographic data for compound 4o; CCDC reference 2285509.

Supplementary Data 3

Crystallographic data for compound 6y; CCDC reference 2285510.

Supplementary Data 4

Structure factors for compound 6y; CCDC reference 2285510.

Supplementary Data 5

Crystallographic data for compound 7d; CCDC reference 2311965.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, T., Wang, HL., Tian, Y. et al. Enantioselective construction of stereogenic-at-sulfur(IV) centres via catalytic acyl transfer sulfinylation. Nat. Chem. (2024). https://doi.org/10.1038/s41557-024-01522-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41557-024-01522-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing