Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Analogies between photochemical reactions and ground-state post-transition-state bifurcations shed light on dynamical origins of selectivity

Abstract

Revealing the origins of kinetic selectivity is one of the premier tasks of applied theoretical organic chemistry, and for many reactions, doing so involves comparing competing transition states. For some reactions, however, a single transition state leads directly to multiple products, in which case non-statistical dynamic effects influence selectivity control. The selectivity of photochemical reactions—where crossing between excited-state and ground-state surfaces occurs near ground-state transition structures that interconvert competing products—also should be controlled by the momentum of the reacting molecules as they return to the ground state in addition to the shape of the potential energy surfaces involved. Now, using machine-learning-assisted non-adiabatic molecular dynamics and multiconfiguration pair-density functional theory, these factors are examined for a classic photochemical reaction—the deazetization of 2,3-diazabicyclo[2.2.2]oct-2-ene—for which we demonstrate that momentum dominates the selectivity for hexadiene versus [2.2.2] bicyclohexane products.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Analogies between ground-state and excited-state reactions.
Fig. 2: Photochemical reactivity of DBO.
Fig. 3: Momentum effects.
Fig. 4: The complicated network of reactions accessible from 1,4-cyclohexanediyl.
Fig. 5: How good was our analogy?

Similar content being viewed by others

Data availability

Additional computational data are provided as online Supplementary Information, including information on neural network model validation, comparison of theoretical methods, data on potential energy surfaces, data on surface hopping points and coordinates for computed structures.

References

  1. Rehbein, J. & Carpenter, B. K. Do we fully understand what controls chemical selectivity? Phys. Chem. Chem. Phys. 13, 20906 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Ess, D. H. et al. Bifurcations on potential energy surfaces of organic reactions. Angew. Chem. Int. Ed. 47, 7592–7601 (2008).

    Article  CAS  Google Scholar 

  3. Martin-Somer, A., Xue, X.-S., Jamieson, C. S., Zou, Y. & Houk, K. N. Computational design of a tetrapericyclic cycloaddition and the nature of potential energy surfaces with multiple bifurcations. J. Am. Chem. Soc. https://doi.org/10.1021/jacs.2c12871 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Campos, R. B. & Tantillo, D. J. Designing reactions with post-transition-state bifurcations: asynchronous nitrene insertions into C–C σ bonds. Chem 5, 227–236 (2019).

    Article  CAS  Google Scholar 

  5. Hare, S. R. & Tantillo, D. J. Post-transition state bifurcations gain momentum – current state of the field. Pure Appl. Chem. 89, 679–698 (2017).

    Article  CAS  Google Scholar 

  6. Guo, W., Hare, S. R., Chen, S.-S., Saunders, C. M. & Tantillo, D. J. C–H insertion in dirhodium tetracarboxylate-catalyzed reactions despite dynamical tendencies toward fragmentation: implications for reaction efficiency and catalyst design. J. Am. Chem. Soc. 144, 17219–17231 (2022).

    Article  CAS  PubMed  Google Scholar 

  7. Hare, S. R. & Tantillo, D. J. Cryptic post-transition state bifurcations that reduce the efficiency of lactone-forming Rh-carbenoid C–H insertions. Chem. Sci. 8, 1442–1449 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Hare, S. R. & Tantillo, D. J. Dynamic behavior of rearranging carbocations – implications for terpene biosynthesis. Beilstein J. Org. Chem. 12, 377–390 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Feng, Z. & Tantillo, D. J. Dynamic effects on migratory aptitudes in carbocation reactions. J. Am. Chem. Soc. 143, 1088–1097 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. Bai, M., Feng, Z., Li, J. & Tantillo, D. J. Bouncing off walls – widths of exit channels from shallow minima can dominate selectivity control. Chem. Sci. 11, 9937–9944 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nieves-Quinones, Y. & Singleton, D. A. Dynamics and the regiochemistry of nitration of toluene. J. Am. Chem. Soc. 138, 15167–15176 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Roytman, V. A. & Singleton, D. A. Solvation dynamics and the nature of reaction barriers and ion-pair intermediates in carbocation reactions. J. Am. Chem. Soc. 142, 12865–12877 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Carpenter, B. K. Energy disposition in reactive intermediates. Chem. Rev. 113, 7265–7286 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Palmer, I. J., Ragazos, I. N., Bernardi, F., Olivucci, M. & Robb, M. A. An MC-SCF study of the S1 and S2 photochemical reactions of benzene. J. Am. Chem. Soc. 115, 673–682 (1993).

    Article  CAS  Google Scholar 

  15. Van der Lugt, W. Th. A. M. & Oosterhoff, L. J. Symmetry control and photoinduced reactions. J. Am. Chem. Soc. 91, 6042–6049 (1969).

    Article  Google Scholar 

  16. Bernardi, F., Olivucci, M. & Robb, M. A. Potential energy surface crossings in organic photochemistry. Chem. Soc. Rev. 25, 321–328 (1996).

    Article  CAS  Google Scholar 

  17. Mai, S. & González, L. Molecular photochemistry: recent developments in theory. Angew. Chem. Int. Ed. 59, 16832–16846 (2020).

    Article  CAS  Google Scholar 

  18. Garavelli, M. Computational organic photochemistry: strategy, achievements and perspectives. Theor. Chem. Acc. 116, 87–105 (2006).

    Article  CAS  Google Scholar 

  19. Carpenter, B. K. Dynamic behavior of organic reactive intermediates. Angew. Chem. Int. Ed. 37, 3340–3350 (1998).

    Article  Google Scholar 

  20. Carpenter, B. K. Dynamic matching: the cause of inversion of configuration in the [1,3] sigmatropic migration? J. Am. Chem. Soc. 117, 6336–6344 (1995).

    Article  CAS  Google Scholar 

  21. Carpenter, B. K. Trajectories through an intermediate at a fourfold branch point. Implications for the stereochemistry of biradical reactions. J. Am. Chem. Soc. 107, 5730–5732 (1985).

    Article  CAS  Google Scholar 

  22. Reyes, M. B., Lobkovsky, E. B. & Carpenter, B. K. Interplay of orbital symmetry and nonstatistical dynamics in the thermal rearrangements of bicyclo[n.1.0]polyenes. J. Am. Chem. Soc. 124, 641–651 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Oyola, Y. & Singleton, D. A. Dynamics and the failure of transition state theory in alkene hydroboration. J. Am. Chem. Soc. 131, 3130–3131 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bailey, J. O. & Singleton, D. A. Failure and redemption of statistical and nonstatistical rate theories in the hydroboration of alkenes. J. Am. Chem. Soc. 139, 15710–15723 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Quijano, L. M. M. & Singleton, D. A. Competition between reaction and intramolecular energy redistribution in solution: observation and nature of nonstatistical dynamics in the ozonolysis of vinyl ethers. J. Am. Chem. Soc. 133, 13824–13827 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kuan, K.-Y. & Singleton, D. A. Vibrationally hot and cold triplets. Sensitizer-dependent dynamics and localized vibrational promotion of a di-π-methane rearrangement. J. Am. Chem. Soc. 142, 19885–19888 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Staroverov, V. N. & Davidson, E. R. Diradical character of the Cope rearrangement transition state. J. Am. Chem. Soc. 122, 186–187 (2000).

    Article  CAS  Google Scholar 

  28. Doering, W. von E. & Roth, W. R. The overlap of two allyl radicals or a four-centered transition state in the Cope rearrangement. Tetrahedron 18, 67–74 (1962).

  29. Li, J., Stein, R. & Lopez, S. A. A theoretical stereoselectivity model of photochemical denitrogenations of diazoalkanes toward strained 1,3-dihalogenated bicyclobutanes. J. Org. Chem. 86, 4061–4070 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Li, J. et al. Automatic discovery of photoisomerization mechanisms with nanosecond machine learning photodynamics simulations. Chem. Sci. 12, 5302–5314 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cox, J. M., Bain, M., Kellogg, M., Bradforth, S. E. & Lopez, S. A. Role of the perfluoro effect in the selective photochemical isomerization of hexafluorobenzene. J. Am. Chem. Soc. 143, 7002–7012 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Li, J., Stein, R., Adrion, D. M. & Lopez, S. A. Machine-learning photodynamics simulations uncover the role of substituent effects on the photochemical formation of cubanes. J. Am. Chem. Soc. 143, 20166–20175 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Li, J. & Lopez, S. A. Excited‐state distortions promote the photochemical 4π‐electrocyclizations of fluorobenzenes via machine learning accelerated photodynamics simulations. Chem. Eur. J. 28, e202200651 (2022).

    Article  CAS  PubMed  Google Scholar 

  34. Li, J. & Lopez, S. A. A look inside the black box of machine learning photodynamics simulations. Acc. Chem. Res. 55, 1972–1984 (2022).

    Article  CAS  PubMed  Google Scholar 

  35. Schmidt, J. R., Parandekar, P. V. & Tully, J. C. Mixed quantum-classical equilibrium: surface hopping. J. Chem. Phys. 129, 044104 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Lodewyk, M. W. et al. The correct structure of aquatolide—experimental validation of a theoretically-predicted structural revision. J. Am. Chem. Soc. 134, 18550–18553 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Nouri, D. & Tantillo, D. They came from the deep: syntheses, applications, and biology of ladderanes. Curr. Org. Chem. 10, 2055–2074 (2006).

    Article  CAS  Google Scholar 

  38. Epplin, R. C. et al. [2]-Ladderanes as isosteres for meta-substituted aromatic rings and rigidified cyclohexanes. Nat. Commun. 13, 6056 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Anderson, M. A. & Grissom, C. B. Increasing the heavy atom effect of xenon by adsorption to zeolites: photolysis of 2,3-diazabicyclo[2.2.2]oct-2-ene. J. Am. Chem. Soc. 118, 9552–9556 (1996).

    Article  CAS  Google Scholar 

  40. Anderson, M. A. & Grissom, C. B. Photolysis of 2,3-diazabicyclo[2.2.2]oct-2-ene: electronic spin determines the distribution of products. J. Am. Chem. Soc. 117, 5041–5048 (1995).

    Article  CAS  Google Scholar 

  41. Engel, P. S., Nalepa, C. J., Soltero, L. R., Horsey, D. W. & Keys, D. E. Photolysis of reluctant azoalkanes. Effect of structure on photochemical loss of nitrogen from 2,3-diazabicyclo[2.2.2]oct-2-ene derivatives. J. Am. Chem. Soc. 105, 7108–7114 (1983).

    Article  CAS  Google Scholar 

  42. Engel, P. S., Hayes, R. A., Keifer, L., Szilagyi, S. & Timberlake, J. W. Extrusion of nitrogen from cyclic and bicyclic azo compounds. J. Am. Chem. Soc. 100, 1876–1882 (1978).

    Article  CAS  Google Scholar 

  43. Engel, P. S. & Nalepa, C. J. Photochemical decomposition and isomerization of aliphatic azo compounds. Pure Appl. Chem. 52, 2621–2632 (1980).

    Article  CAS  Google Scholar 

  44. Edmunds, A. J. F. & Samuel, C. J. Photochemical deazetation of 2,3-diazabicyclo[2.2.2]oct-2-ene: pseudorotation of the cyclohexanediyl biradical. J. Chem. Soc. Perkin Trans. 1 https://doi.org/10.1039/p19890001267 (1989)

  45. Chen, H. & Li, S. Theoretical study on the photolysis mechanism of 2,3-diazabicyclo[2.2.2]oct-2-ene. J. Am. Chem. Soc. 127, 13190–13199 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Roberson, M. J. & Simons, J. Ab initio study of the mechanism of photolytic deazatization of 2,3-diazabicyclo[2.2.2]oct-2-ene and 2,3-diazabicyclo[2.2.1]hept-2-ene. J. Phys. Chem. A 101, 2379–2383 (1997).

    Article  CAS  Google Scholar 

  47. Doubleday, C., Armas, R., Walker, D., Cosgriff, C. V. & Greer, E. M. Heavy‐atom tunneling calculations in thirteen organic reactions: tunneling contributions are substantial, and Bell’s formula closely approximates multidimensional tunneling at ≥250 K. Angew. Chem. Int. Ed. 56, 13099–13102 (2017).

    Article  CAS  Google Scholar 

  48. Li, X., Liao, T. & Chung, L. W. Computational prediction of excited-state carbon tunneling in the two steps of triplet Zimmerman di-π-methane rearrangement. J. Am. Chem. Soc. 139, 16438–16441 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Sponsler, M. B., Jain, R., Coms, F. D. & Dougherty, D. A. Matrix-isolation decay kinetics of triplet cyclobutanediyls. Observation of both Arrhenius behavior and heavy-atom tunneling in carbon-carbon bond-forming reactions. J. Am. Chem. Soc. 111, 2240–2252 (1989).

    Article  CAS  Google Scholar 

  50. Buchwalter, S. L. & Closs, G. L. Electron spin resonance and CIDNP studies on 1,3-cyclopentadiyls. A localized 1,3 carbon biradical system with a triplet ground state. Tunneling in carbon-carbon bond formation. J. Am. Chem. Soc. 101, 4688–4694 (1979).

    Article  CAS  Google Scholar 

  51. Mignolet, B., Curchod, B. F. E. & Martínez, T. J. Rich athermal ground-state chemistry triggered by dynamics through a conical intersection. Angew. Chem. Int. Ed. 128, 15217–15220 (2016).

    Article  Google Scholar 

  52. Hoyer, C. E., Ghosh, S., Truhlar, D. G. & Gagliardi, L. Multiconfiguration pair-density functional theory is as accurate as CASPT2 for electronic excitation. J. Phys. Chem. Lett. 7, 586–591 (2016).

    Article  CAS  PubMed  Google Scholar 

  53. Gagliardi, L. et al. Multiconfiguration pair-density functional theory: a new way to treat strongly correlated systems. Acc. Chem. Res. 50, 66–73 (2017).

    Article  CAS  PubMed  Google Scholar 

  54. Li Manni, G. et al. Multiconfiguration pair-density functional theory. J. Chem. Theory Comput. 10, 3669–3680 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Sharma, P., Bao, J. J., Truhlar, D. G. & Gagliardi, L. Multiconfiguration pair-density functional theory. Annu. Rev. Phys. Chem. 72, 541–564 (2021).

    Article  CAS  PubMed  Google Scholar 

  56. Widmark, P.-O., Persson, B. J. & Roos, B. O. Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions. Theor. Chim. Acta 79, 419–432 (1991).

    Article  CAS  Google Scholar 

  57. Pou-Amérigo, R., Merchán, M., Nebot-Gil, I., Widmark, P.-O. & Roos, B. O. Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions. Theor. Chim. Acta 92, 149–181 (1995).

    Article  Google Scholar 

  58. Widmark, P.-O., Malmqvist, P.-A. & Roos, B. O. Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions. Theor. Chim. Acta 77, 291–306 (1990).

    Article  CAS  Google Scholar 

  59. Pierloot, K., Dumez, B., Widmark, P.-O. & Roos, B. O. Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions. Theor. Chim. Acta 90, 87–114 (1995).

    Article  CAS  Google Scholar 

  60. Finley, J., Malmqvist, P.-Å., Roos, B. O. & Serrano-Andrés, L. The multi-state CASPT2 method. Chem. Phys. Lett. 288, 299–306 (1998).

    Article  CAS  Google Scholar 

  61. Penfold, T. J., Gindensperger, E., Daniel, C. & Marian, C. M. Spin-vibronic mechanism for intersystem crossing. Chem. Rev. 118, 6975–7025 (2018).

    Article  CAS  PubMed  Google Scholar 

  62. Marian, C. M. Spin–orbit coupling and intersystem crossing in molecules. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 187–203 (2012).

    Article  CAS  Google Scholar 

  63. Mai, S., Marquetand, P. & González, L. A general method to describe intersystem crossing dynamics in trajectory surface hopping. Int. J. Quantum Chem. 115, 1215–1231 (2015).

    Article  CAS  Google Scholar 

  64. Richter, M., Marquetand, P., González-Vázquez, J., Sola, I. & González, L. SHARC: ab initio molecular dynamics with surface hopping in the adiabatic representation including arbitrary couplings. J. Chem. Theory Comput. 7, 1253–1258 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Mitchell, E. C., Scott, T. R., Bao, J. J. & Truhlar, D. G. Application of multiconfiguration pair-density functional theory to the Diels–Alder reaction. J. Phys. Chem. A 126, 8834–8843 (2022).

    Article  CAS  PubMed  Google Scholar 

  66. Calio, P. B., Truhlar, D. G. & Gagliardi, L. Nonadiabatic molecular dynamics by multiconfiguration pair-density functional theory. J. Chem. Theory Comput. 18, 614–622 (2022).

    Article  CAS  PubMed  Google Scholar 

  67. Chen, Z., Nieves-Quinones, Y., Waas, J. R. & Singleton, D. A. Isotope effects, dynamic matching, and solvent dynamics in a Wittig reaction. Betaines as bypassed intermediates. J. Am. Chem. Soc. 136, 13122–13125 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wang, L., Akimov, A. & Prezhdo, O. V. Recent progress in surface hopping: 2011–2015. J. Phys. Chem. Lett. 7, 2100–2112 (2016).

    Article  CAS  PubMed  Google Scholar 

  69. Barbatti, M. Nonadiabatic dynamics with trajectory surface hopping method. Wiley Interdiscip. Rev. Comput. Mol. Sci. 1, 620–633 (2011).

    Article  CAS  Google Scholar 

  70. Tully, J. C. Molecular dynamics with electronic transitions. J. Chem. Phys. 93, 1061–1071 (1990).

    Article  CAS  Google Scholar 

  71. Tully, J. C. Mixed quantum–classical dynamics. Faraday Discuss. 110, 407–419 (1998).

    Article  CAS  Google Scholar 

  72. Zhang, T. et al. Investigations of an unexpected [2 + 2] photocycloaddition in the synthesis of (−)-scabrolide A from quantum mechanics calculations. J. Org. Chem. 87, 14115–14124 (2022).

    Article  CAS  PubMed  Google Scholar 

  73. Aquilante, F. et al. Modern quantum chemistry with [Open]Molcas. J. Chem. Phys. 152, 214117 (2020).

    Article  CAS  PubMed  Google Scholar 

  74. Fdez. Galván, I. et al. OpenMolcas: from source code to insight. J. Chem. Theory Comput. 15, 5925–5964 (2019).

    Article  PubMed  Google Scholar 

  75. Hellweg, A., Hättig, C., Höfener, S. & Klopper, W. Optimized accurate auxiliary basis sets for RI-MP2 and RI-CC2 calculations for the atoms Rb to Rn. Theor. Chem. Acc. 117, 587–597 (2007).

    Article  CAS  Google Scholar 

  76. Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 8, 1057–1065 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Neese, F., Wennmohs, F., Hansen, A. & Becker, U. Efficient, approximate and parallel Hartree–Fock and hybrid DFT calculations. A ‘chain-of-spheres’ algorithm for the Hartree–Fock exchange. Chem. Phys. 356, 98–109 (2009).

    Article  CAS  Google Scholar 

  79. Neese, F. Software update: the ORCA program system, version 4.0. WIREs Comput. Mol. Sci. 8, e1327 (2018).

  80. Neese, F. The ORCA program system. WIREs Computational Molecular Science 2, 73–78 (2012).

    Article  CAS  Google Scholar 

  81. Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).

    Article  PubMed  Google Scholar 

  82. Ishida, T., Nanbu, S. & Nakamura, H. Clarification of nonadiabatic chemical dynamics by the Zhu-Nakamura theory of nonadiabatic transition: from tri-atomic systems to reactions in solutions. Int. Rev. Phys. Chem. 36, 229–285 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge support from the National Science Foundation (CHE-1856416 and supercomputing resources from the Extreme Science and Engineering Discovery Environment (XSEDE) and Advanced Cyberinfrastructure Coordination Ecosystem: Services & Support (ACCESS) programmes to D.J.T.). The preliminary work of D.J.T. and Z.F. on photochemical modelling was supported by the American Chemical Society’s Petroleum Research Fund (ACS-PRF, PRF no. 60663-ND4). We also thank S. Lopez and J. Li for their helpful suggestions.

Author information

Authors and Affiliations

Authors

Contributions

D.J.T. conceptualized the project. Z.F. designed the computational experiments with input from all authors. Z.F., W.G. and W.-Y.K. performed the calculations. All authors analysed and interpreted data. Z.F. draughted the original version of the paper. Z.F. and D.J.T. edited the paper with input from all authors.

Corresponding author

Correspondence to Dean J. Tantillo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Lung Wa Chung, Jingbai Li and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures, tables and Discussion.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Z., Guo, W., Kong, WY. et al. Analogies between photochemical reactions and ground-state post-transition-state bifurcations shed light on dynamical origins of selectivity. Nat. Chem. 16, 615–623 (2024). https://doi.org/10.1038/s41557-023-01410-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01410-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing