Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inverse kinetic isotope effects in the oxygen reduction reaction at platinum single crystals

Abstract

Although the oxygen reduction reaction (ORR) involves multiple proton-coupled electron transfer processes, early studies reported the absence of kinetic isotope effects (KIEs) on polycrystalline platinum, probably due to the use of unpurified D2O. Here we developed a methodology to prepare ultra-pure D2O, which is indispensable for reliably investigating extremely surface-sensitive platinum single crystals. We find that Pt(111) exhibits much higher ORR activity in D2O than in H2O, with potential-dependent inverse KIEs of ~0.5, whereas Pt(100) and Pt(110) exhibit potential-independent inverse KIEs of ~0.8. Such inverse KIEs are closely correlated to the lower *OD coverage and weakened *OD binding strength relative to *OH, which, based on theoretical calculations, are attributed to the differences in their zero-point energies. This study suggests that the competing adsorption between *OH/*OD and *O2 probably plays an important role in the ORR rate-determining steps that involve a chemical step preceding an electrochemical step (CE mechanism).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cyclic voltammetric profiles of platinum single crystals in acidic ultra-high-purity H2O and D2O.
Fig. 2: Oxygen reduction reaction kinetics on platinum single crystals in acidic ultra-high-purity H2O and D2O.
Fig. 3: Carbon monoxide electrooxidation kinetics on platinum single crystals in acidic ultra-high-purity H2O and D2O.
Fig. 4: Cyclic voltammetric profiles of Pt(111) in alkaline media and theoretical calculations of OH and OD adsorption.

Similar content being viewed by others

Data availability

Source Data are provided with this paper.

References

  1. Warburton, R. E., Soudackov, A. V. & Hammes-Schiffer, S. Theoretical modeling of electrochemical proton-coupled electron transfer. Chem. Rev. 122, 10599–10650 (2022).

  2. Agarwal, R. G. et al. Free energies of proton-coupled electron transfer reagents and their applications. Chem. Rev. 122, 1–49 (2022).

    Article  CAS  Google Scholar 

  3. George, T. Y., Asset, T., Avid, A., Atanassov, P. & Zenyuk, I. V. Kinetic isotope effect as a tool to investigate the oxygen reduction reaction on Pt-based electrocatalysts—part I: high-loading Pt/C and Pt extended surface. ChemPhysChem 21, 469–475 (2020).

    Article  CAS  Google Scholar 

  4. Gómez-Marín, A. M., Rizo, R. & Feliu, J. M. Oxygen reduction reaction at Pt single crystals: a critical review. Catal. Sci. Technol. 4, 1685–1698 (2014).

    Article  Google Scholar 

  5. Yang, Y. et al. Electrocatalysis in alkaline media and alkaline membrane-based energy technologies. Chem. Rev. 122, 6117–6321 (2022).

    Article  CAS  Google Scholar 

  6. Bawn, C. E. H. & Ogden, G. Wave mechanical effects and the reactivity of the hydrogen isotopes. Trans. Faraday Soc. 30, 432–443 (1934).

    Article  CAS  Google Scholar 

  7. Conway, B. E. & Steacie, E. W. R. Kinetics of electrolytic hydrogen and deuterium evolution. Proc. R. Soc. A. 256, 128–144 (1960).

    CAS  Google Scholar 

  8. Bockris, J. O. M. & Matthews, D. B. Proton tunneling in the hydrogen evolution reaction. J. Chem. Phys. 44, 298–309 (1966).

    Article  CAS  Google Scholar 

  9. Ghoneim, M. M., Clouser, S. & Yeager, E. Oxygen reduction kinetics in deuterated phosphoric acid. J. Electrochem. Soc. 132, 1160–1162 (1985).

    Article  CAS  Google Scholar 

  10. Tse, E. C. M., Varnell, J. A., Hoang, T. T. H. & Gewirth, A. A. Elucidating proton involvement in the rate-determining step for Pt/Pd-based and non-precious-metal oxygen reduction reaction catalysts using the kinetic isotope effect. J. Phys. Chem. Lett. 7, 3542–3547 (2016).

    Article  CAS  Google Scholar 

  11. Chen, Y., Asset, T., Lee, R., Artyushkova, K. & Atanassov, P. Kinetic isotopic effect studies of iron–nitrogen–carbon electrocatalysts for oxygen reduction reaction. J. Phys. Chem. C 123, 11476–11483 (2019).

    Article  CAS  Google Scholar 

  12. Mei, D. et al. Mechanistic and kinetic implications on the ORR on a Au(100) electrode: pH, temperature and H–D kinetic isotope effects. Phys. Chem. Chem. Phys. 16, 13762–13773 (2014).

    Article  CAS  Google Scholar 

  13. Malko, D. & Kucernak, A. Kinetic isotope effect in the oxygen reduction reaction (ORR) over Fe–N/C catalysts under acidic and alkaline conditions. Electrochem. Commun. 83, 67–71 (2017).

    Article  CAS  Google Scholar 

  14. Wang, Y. et al. Synergistic Mn–Co catalyst outperforms Pt on high-rate oxygen reduction reaction for alkaline polymer electrolyte fuel cells. Nat. Commun. 10, 1506 (2019).

    Article  Google Scholar 

  15. Tse, E. C. M., Varnell, J. A., Hoang, T. T. H. & Gewirth, A. A. Observation of an inverse kinetic isotope effect in oxygen evolution electrochemistry. ACS Catal. 6, 5706–5714 (2016).

    Article  CAS  Google Scholar 

  16. Conway, B. E., Angerstein-Kozlowska, H., Sharp, W. B. A. & Criddle, E. E. Ultrapurification of water for electrochemical and surface chemical work by catalytic pyrodistillation. Anal. Chem. 45, 1331–1336 (1973).

    Article  CAS  Google Scholar 

  17. Hetland, E. Electrolytic conductivity of NaOH in H2O and of NaOD in D2O at 25°. A vacuum distilling apparatus for deuterium oxide. J. Am. Chem. Soc. 68, 2532–2535 (1946).

    Article  CAS  Google Scholar 

  18. Sakaushi, K. Quantum proton tunneling in multielectron/-proton transfer electrode processes. Faraday Discuss. 221, 428–448 (2020).

    Article  CAS  Google Scholar 

  19. Orts, J. M., Gomez, R., Feliu, J. M., Aldaz, A. & Clavilier, J. Potentiostatic charge displacement by exchanging adsorbed species on Pt(111) electrodes-acidic electrolytes with specific anion adsorption. Electrochem. Acta 39, 1519–1524 (1994).

    Article  CAS  Google Scholar 

  20. Markvoic, N. M., Gasteiger, H. A. & Ross, P. N. Kinetics of oxygen reduction on Pt(hkl) electrodes: implications for the crystallite size effect with supported Pt electrocatalysts. J. Electrochem. Soc. 144, 1591–1597 (1997).

    Article  Google Scholar 

  21. Berna, A., Climent, V. & Feliu, J. M. New understanding of the nature of OH adsorption on Pt(111) electrodes. Electrochem. Commun. 9, 2789–2794 (2007).

    Article  CAS  Google Scholar 

  22. Arán-Ais, R. M. et al. On the behavior of the Pt(100) and vicinal surfaces in alkaline media. Electrochim. Acta 58, 184–192 (2011).

    Article  Google Scholar 

  23. Attard, G., Souza-Garcia, J., Martínez-Hincapié, R. & Feliu, J. M. Nitrate anion reduction in aqueous perchloric acid as an electrochemical probe of Pt{110}-(1×1) terrace sites. J. Catal. 378, 238–247 (2019).

    Article  CAS  Google Scholar 

  24. Rebollar, L., Intikhab, S., Snyder, J. D. & Tang, M. H. Kinetic isotope effects quantify pH-sensitive water dynamics at the Pt electrode interface. J. Phys. Chem. Lett. 11, 2308–2313 (2020).

    Article  CAS  Google Scholar 

  25. Gómez-Marín, A. M., Feliu, J. M. & Ticianelli, E. Oxygen reduction on platinum surfaces in acid media: experimental evidence of a CECE/DISP initial reaction path. ACS Catal. 9, 2238–2251 (2019).

    Article  Google Scholar 

  26. Gómez-Marín, A. M., Feliu, J. M. & Ticianelli, E. Reaction mechanism for oxygen reduction on platinum: existence of a fast initial chemical step and a soluble species different from H2O2. ACS Catal. 8, 7931–7943 (2018).

    Article  Google Scholar 

  27. Dong, J. et al. In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces. Nat. Energy 4, 60–67 (2019).

    Article  CAS  Google Scholar 

  28. Briega-Martos, V., Herrero, E. & Feliu, J. M. Effect of pH and water structure on the oxygen reduction reaction on platinum electrodes. Electrochim. Acta 241, 497–509 (2017).

    Article  CAS  Google Scholar 

  29. Zhuang, L., Jin, J. & Abruña, H. D. Direct observation of electrocatalytic synergy. J. Am. Chem. Soc. 129, 11033–11035 (2007).

    Article  CAS  Google Scholar 

  30. Gómez, R., Feliu, J. M., Aldaz, A. & Weaver, M. J. Validity of double-layer charge-corrected voltammetry for assaying carbon monoxide coverages on ordered transition metals: comparisons with adlayer structures in electrochemical and ultrahigh vacuum environments. Surf. Sci. 410, 48–61 (1998).

    Article  Google Scholar 

  31. Rizo, R., Herrero, E. & Feliu, J. M. Oxygen reduction reaction on stepped platinum surfaces in alkaline media. Phys. Chem. Chem. Phys. 15, 15416–15425 (2013).

    Article  CAS  Google Scholar 

  32. McCrum, I. T. & Janik, M. J. pH and Alkali cation effects on the Pt cyclic voltammogram explained using density functional theory. J. Phys. Chem. C 120, 457–471 (2016).

    Article  CAS  Google Scholar 

  33. Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article  Google Scholar 

  34. Hansen, H. A., Rossmeisl, J. & Nørskov, J. K. Surface Pourbaix diagrams and oxygen reduction activity of Pt, Ag and Ni(111) surfaces studied by DFT. Phys. Chem. Chem. Phys. 10, 3722–3730 (2008).

    Article  CAS  Google Scholar 

  35. McCrum, I. T., Chen, X., Schwarz, K. A., Janik, M. J. & Koper, M. T. M. Effect of step density and orientation on the apparent pH dependence of hydrogen and hydroxide adsorption on stepped platinum surfaces. J. Phys. Chem. C 122, 16756–16764 (2018).

  36. van der Niet, M. J. T. C., Garcia-Araeza, N., Hernández, J., Feliu, J. M. & Koper, M. T. M. Water dissociation on well-defined platinum surfaces: the electrochemical perspective. Catal. Today 202, 105–113 (2013).

    Article  Google Scholar 

  37. Rizo, R. et al. Investigating the presence of adsorbed species on Pt steps at low potentials. Nat. Commun. 13, 2550 (2022).

    Article  CAS  Google Scholar 

  38. Garcia-Araeza, N., Climent, V. & Feliu, J. M. Analysis of temperature effects on hydrogen and OH adsorption on Pt(111), Pt(100) and Pt(110) by means of Gibbs thermodynamics. J. Electroanal. Chem. 649, 69–82 (2010).

    Article  Google Scholar 

  39. ASTM D1193-99e1: Standard Specification for Reagent Water (ASTM International, 1999).

  40. Milli-Q Direct Water Purification System: Pure and Ultrapure Water Directly From Tap Water PB1032ENUS (EMD, 2020).

  41. Amarego, W. L. F. & Perrin, D. D. in Purification of Laboratory Chemicals 4th edn (Elsevier, 1996).

  42. Monteiro, M. C. O. & Koper, M. T. M. Alumina contamination through polishing and its effect on hydrogen evolution on gold electrodes. Electrochem. Acta 325, 134915 (2019).

    Article  CAS  Google Scholar 

  43. Agarwal, R. Determination and application of hydrogen transfer thermochemistry: studies of molecules, nanoparticles, and metallic electrodes. PhD thesis, Univ. Yale (2021).

  44. Clavilier, J., Faure, R., Guinet, G. & Durand, R. Preparation of monocrystalline Pt microelectrodes and electrochemical study of the plane surfaces cut in the direction of the {111} and {110} planes. J. Electroanal. Chem. 107, 205–209 (1980).

    Article  CAS  Google Scholar 

  45. Attard, G. A. et al. The voltammetry of surfaces vicinal to Pt{110}: structural complexity simplified by CO cooling. J. Electroanal. Chem. 793, 137–146 (2017).

    Article  CAS  Google Scholar 

  46. Rossmeisl, J., Skúlason, E., Björketun, M. E., Tripkovic, V. & Nørskov, J. K. Modeling the electrified solid–liquid interface. Chem. Phys. Lett. 466, 68–71 (2008).

    Article  CAS  Google Scholar 

  47. Jerkiewicz, G. Standard and reversible hydrogen electrodes: theory, design, operation, and applications. ACS Catal. 10, 8409–8417 (2020).

    Article  CAS  Google Scholar 

  48. McIntyre, J. D. E. & Salomon, M. Kinetic isotope effects in the hydrogen electrode reaction. J. Phys. Chem. 72, 2431–2434 (1968).

    Article  CAS  Google Scholar 

  49. Lam, Y.-C., Soudackov, A. V. & Hammes-Schiffer, S. Theory of electrochemical proton-coupled electron transfer in diabatic vibronic representation: application to proton discharge on metal electrodes in alkaline solution. J. Phys. Chem. C 124, 27309–27322 (2020).

    Article  CAS  Google Scholar 

  50. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Condens. Matter Phys. 21, 395502 (2009).

    Article  Google Scholar 

  51. Giannozzi, P. et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Condens. Matter Phys. 29, 465901 (2017).

    Article  CAS  Google Scholar 

  52. Zhang, Y. & Yang, W. Comment on “Generalized gradient approximation made simple”. Phys. Rev. Lett. 80, 890–890 (1998).

    Article  CAS  Google Scholar 

  53. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    Article  CAS  Google Scholar 

  54. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  55. Dal Corso, A. Pseudopotentials periodic table: From H to Pu. Comput. Mater. Sci. 95, 337–350 (2014).

    Article  CAS  Google Scholar 

  56. Methfessel, M. & Paxton, A. T. High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 40, 3616–3621 (1989).

    Article  CAS  Google Scholar 

  57. Liu, S., White, M. G. & Liu, P. Mechanism of oxygen reduction reaction on Pt(111) in alkaline solution: importance of chemisorbed water on surface. J. Phys. Chem. C 120, 15288–15298 (2016).

    Article  CAS  Google Scholar 

  58. Anderson, A. B., Uddin, J. & Jinnouchi, R. Solvation and zero-point-energy effects on OH(ads) reduction on Pt(111) electrodes. J. Phys. Chem. C 114, 14946–14952 (2010).

    Article  CAS  Google Scholar 

  59. Sakong, S., Naderian, M., Mathew, K., Hennig, R. G. & Groß, A. Density functional theory study of the electrochemical interface between a Pt electrode and an aqueous electrolyte using an implicit solvent method. J. Chem. Phys. 142, 234107 (2015).

    Article  Google Scholar 

  60. Kristoffersen, H. H., Vegge, T. & Hansen, H. A. OH formation and H2 adsorption at the liquid water–Pt(111) interface. Chem. Sci. 9, 6912–6921 (2018).

    Article  CAS  Google Scholar 

  61. Ditchfield, R., Hehre, W. J. & Pople, J. A. Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules. J. Chem. Phys. 54, 724–728 (1971).

    Article  CAS  Google Scholar 

  62. Hehre, W. J., Ditchfield, R. & Pople, J. A. Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules. J. Chem. Phys. 56, 2257–2261 (1972).

    Article  CAS  Google Scholar 

  63. Hariharan, P. C. & Pople, J. A. The influence of polarization functions on molecular orbital hydrogenation energies. Theor. Chim. Acta 28, 213–222 (1973).

    Article  CAS  Google Scholar 

  64. Francl, M. M. et al. Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements. J. Chem. Phys. 77, 3654–3665 (1982).

    Article  CAS  Google Scholar 

  65. Frisch, M. J. et al. Gaussian 16 Rev. C.01 (Wallingford, 2016).

  66. Scalmani, G. & Frisch, M. J. Continuous surface charge polarizable continuum models of solvation. I. General formalism. J. Chem. Phys. 132, 114110 (2010).

    Article  Google Scholar 

  67. Sakong, S., Naderian, M., Mathew, K., Hennig, R. G. & Groß, A. Density functional theory study of the electrochemical interface between a Pt electrode and an aqueous electrolyte using an implicit solvent method. J. Chem. Phy. 142, 234107 (2015).

    Article  Google Scholar 

  68. NIST Chemistry WebBook: NIST Standard Reference Database Number 69 (eds. Lindstrom, P. J. & Mallard, W. G.) (National Institute of Standards and Technology, 2022).

Download references

Acknowledgements

This work was primarily supported by the Center for Alkaline-Based Energy Solutions (CABES), part of the Energy Frontier Research Center (EFRC) program supported by the US Department of Energy, under grant no. DE-SC-0019445. R.G.A. and J.M.M. acknowledge funding from the Molecular Electrochemistry Multi-University Research Initiative (MURI) supported by the US Air Force Office of Scientific Research, under grant nos. FA9550-18-1-0420; the US National Science Foundation award no. CHE-1904813 for support; and a supplement that supported R.G.A’s visit to the Koper laboratory in Leiden. P.H. and R.G. A acknowledge support from National Science Foundation Graduate Research Fellowships. R.R, E.H and J.M.F. acknowledge funding from Ministerio de Ciencia e Innovación (Spain) under grant no. PID2019-105653GB-I00. R.G.A. would also like to thank M. Koper and the members of his laboratory for their hospitality during his short stay in Leiden, and for introducing him to the challenges of preparing high-purity D2O.

Author information

Authors and Affiliations

Authors

Contributions

Y.Y. and H.D.A. conceived the project. Y.Y. performed electrochemical measurements with help from X.L. R.R. independently verified the experimental results under the guidance of E.H. and J.M.F. R.G.A. developed the D2O purification method under the guidance of J.M.M. P.H. and A.V.S performed DFT simulations under the guidance of S.H.-S. All of the authors discussed the results and approved the manuscript.

Corresponding authors

Correspondence to Enrique Herrero, Juan M. Feliu, Sharon Hammes-Schiffer, James M. Mayer or Héctor D. Abruña.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Henrik Kristoffersen, Vojislav Stamenkovic and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 A simplified mechanisms proposed for the oxygen reduction reaction (ORR) in acid.

Reaction pathways have been established based on extensive studies on Pt surfaces and may be applicable to other types of catalysts. A superscript * by an intermediate indicates a reaction intermediate adsorbed on the electrocatalytic surface. The CE mechanism in acid, marked in green, represents a fast surface chemical reaction preceding an irreversible oneelectron transfer process. PCET stands for proton-coupled electron transfer process. H2O serves as the proton donor in alkaline media. Solution species were not included for simplicity. Complete ORR mechanisms in acid and base can be found in Supplementary Fig. 5.

Extended Data Fig. 2 Comparisons of ORR polarization profiles of three low-index Pt single crystals in acidic H2O and D2O.

Comparisons of ORR polarization profiles of three low-index Pt single crystals in O2-saturated 0.1 M HClO4 in H2O (A) and D2O (B).

Source data

Extended Data Fig. 3 Potential axis.

Potential axis showing that the RDeE is equal to the RHE in acid (for example 0.1 M HClO4, pH = 1) but is more negative than the RHE by 51 mV in base (for example 0.1 M NaOH, pH = 13) due to due to the difference in pKa in H2O (14) and D2O (14.87).

Extended Data Fig. 4 Tafel plots of Pt(111) and *OD/*OH adsorption coverage in base.

(A) Tafel plots of Pt(111) in O2-sat. 0.1 M NaOH in H2O and D2O at 1600 rpm based ORR polarization profiles in Supplementary Fig. 6. (B) *OD and *OH adsorption coverage on Pt(111) in alkaline D2O and H2O as a function of potentials extracted from Fig. 4A.

Source data

Supplementary information

Supplementary Information

Supplementary Notes, Figs. 1–6, Tables 1–11, equations 1–3 and refs. 73–77.

Source data

Source Data Fig. 1

Associated Source Data.

Source Data Fig. 2

Associated Source Data.

Source Data Fig. 3

Associated Source Data.

Source Data Fig. 4

Associated Source Data.

Source Data Extended Data Fig. 2

Associated Source Data.

Source Data Extended Data Fig. 4

Associated Source Data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Agarwal, R.G., Hutchison, P. et al. Inverse kinetic isotope effects in the oxygen reduction reaction at platinum single crystals. Nat. Chem. 15, 271–277 (2023). https://doi.org/10.1038/s41557-022-01084-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-022-01084-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing