Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Biosynthesis-guided discovery reveals enteropeptins as alternative sactipeptides containing N-methylornithine

Abstract

The combination of next-generation DNA sequencing technologies and bioinformatics has revitalized natural product discovery. Using a bioinformatic search strategy, we recently identified 600 gene clusters in otherwise overlooked streptococci that code for ribosomal peptide natural products synthesized by radical S-adenosylmethionine enzymes. These grouped into 16 subfamilies and pointed to an unexplored microbiome biosynthetic landscape. Here we report the structure, biosynthesis and function of one of these natural product groups, which we term enteropeptins, from the gut microbe Enterococcus cecorum. We show three reactions in the biosynthesis of enteropeptins that are each catalysed by a different family of metalloenzymes. Among these, we characterize the founding member of a widespread superfamily of Fe–S-containing methyltransferases, which, together with an Mn2+-dependent arginase, installs N-methylornithine in the peptide sequence. Biological assays with the mature product revealed bacteriostatic activity only against the producing strain, extending an emerging theme of fratricidal or self-inhibitory metabolites in microbiome firmicutes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Streptococcal RaS-RiPPs and the kgr gene cluster.
Fig. 2: Reactions of KgrBCD characterized by HR-MS and HR-MS/MS.
Fig. 3: NMR spectral analysis of the product of the reaction of KgrA with KgrBCD.
Fig. 4: Orn N-methylation catalysed by KgrB.
Fig. 5: Discovery of enteropeptins, the mature products of the kgr cluster, from E. cecorum.
Fig. 6: Enteropeptin activity and compound class.

Similar content being viewed by others

Data availability

The Uniprot ID for KgrC is S1RLF6. Plasmids and strains used in this study are described in Supplementary Table 2. All oligonucleotides are shown in Supplementary Table 3. The sequences of codon-optimized gene fragments are provided in Supplementary Note 1. Other relevant data supporting the findings of this study are available within the paper and the supplementary material. NMR spectra are included in Supplementary Information. Raw NMR data used to elucidate natural product structures are available from the corresponding author upon reasonable request.

References

  1. Fischbach, M. A. & Walsh, C. T. Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chem. Rev. 106, 3468–3496 (2006).

    Article  CAS  Google Scholar 

  2. Montalbán-López, M. et al. New developments in RiPP discovery, enzymology and engineering. Nat. Prod. Rep. 38, 130–239 (2021).

    Article  Google Scholar 

  3. The Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).

    Article  Google Scholar 

  4. Donia, M. S. et al. A systematic analysis of biosynthetic gene clusters in the human microbiome reveals a common family of antibiotics. Cell 158, 1402–1414 (2014).

    Article  CAS  Google Scholar 

  5. Bushin, L. B., Clark, K. A., Pelczer, I. & Seyedsayamdost, M. R. Charting an unexplored streptococcal biosynthetic landscape reveals a unique peptide cyclization motif. J. Am. Chem. Soc. 140, 17674–17684 (2018).

    Article  CAS  Google Scholar 

  6. Russell, A. H. & Truman, A. W. Genome mining strategies for ribosomally synthesised and post-translationally modified peptides. Comput. Struct. Biotechnol. J. 18, 1838–1851 (2020).

    Article  CAS  Google Scholar 

  7. Hetrick, K. J. & van der Donk, W. A. Ribosomally synthesized and post-translationally modified peptide natural product discovery in the genomic era. Curr. Opin. Chem. Biol. 38, 36–44 (2017).

    Article  CAS  Google Scholar 

  8. Kloosterman, A. M., Medema, M. H. & van Wezel, G. P. Omics-based strategies to discover novel classes of RiPP natural products. Curr. Opin. Biotechnol. 69, 60–67 (2021).

    Article  CAS  Google Scholar 

  9. Tietz, J. I. & Mitchell, D. A. Using genomics for natural product structure elucidation. Curr. Top. Med. Chem. 16, 1645–1694 (2016).

    Article  CAS  Google Scholar 

  10. Schramma, K. R., Bushin, L. B. & Seyedsayamdost, M. R. Structure and biosynthesis of a macrocyclic peptide containing an unprecedented lysine-to-tryptophan crosslink. Nature Chem 7, 431–437 (2015).

    Article  CAS  Google Scholar 

  11. Ibrahim, M. et al. Control of the transcription of a short gene encoding a cyclic peptide in Streptococcus thermophilus: a new quorum-sensing system? J. Bacteriol. 189, 8844–8854 (2007).

    Article  CAS  Google Scholar 

  12. Broderick, J. B., Duffus, B. R., Duschene, K. S. & Shepard, E. M. Radical S-adenosylmethionine enzymes. Chem. Rev. 114, 4229–4317 (2014).

    Article  CAS  Google Scholar 

  13. Landgraf, B. J., McCarthy, E. L. & Booker, S. J. Radical S-adenosylmethionine enzymes in human health and disease. Annu. Rev. Biochem. 85, 485–514 (2016).

    Article  CAS  Google Scholar 

  14. Bassler, B. L. & Losick, R. Bacterially speaking. Cell 125, 237–246 (2006).

    Article  CAS  Google Scholar 

  15. Whiteley, M., Diggle, P. S. & Greenberg, E. P. Progress in and promise of bacterial quorum sensing research. Nature 551, 313–320 (2017).

    Article  CAS  Google Scholar 

  16. Rued, B. E. et al. Quorum sensing in Streptococcus mutans regulates production of tryglysin, a novel RaS-RiPP antimicrobial compound. mBio 12, e02688–20 (2021).

    CAS  Google Scholar 

  17. Bushin, L. B., Covington, B. C., Rued, B. E., Federle, M. J. & Seyedsayamdost, M. R. Discovery and biosynthesis of streptosactin, a sactipeptide with an alternative topology encoded by commensal bacteria in the human microbiome. J. Am. Chem. Soc. 142, 16265–16275 (2020).

    Article  CAS  Google Scholar 

  18. Caruso, A. & Seyedsayamdost, M. R. Radical SAM enzyme QmpB installs two 9-membered ring sactionine macrocycles during biogenesis of a ribosomal peptide natural product. J. Org. Chem. 86, 11284–11289 (2021).

    Article  CAS  Google Scholar 

  19. Clark, K. A., Bushin, L. B. & Seyedsayamdost, M. R. Aliphatic ether bond formation expands the scope of radical SAM enzymes in natural product biosynthesis. J. Am. Chem. Soc. 141, 10610–10615 (2019).

    Article  CAS  Google Scholar 

  20. Caruso, A., Bushin, L. B., Clark, K. A., Martinie, R. J. & Seyedsayamdost, M. R. Radical approach to enzymatic β-thioether bond formation. J. Am. Chem. Soc. 141, 990–997 (2019).

    Article  CAS  Google Scholar 

  21. Caruso, A., Martinie, R. J., Bushin, L. B. & Seyedsayamdost, M. R. Macrocyclization via an arginine-tyrosine crosslink broadens the reaction scope of radical S-adenosylmethionine enzymes. J. Am. Chem. Soc. 141, 16610–16614 (2019).

    Article  CAS  Google Scholar 

  22. Burkhart, B. J., Hudson, G. A., Dunbar, K. L. & Mitchell, D. A. A prevalent peptide-binding domain guides ribosomal natural product biosynthesis. Nat. Chem. Biol. 11, 564–570 (2015).

    Article  CAS  Google Scholar 

  23. Kanyo, Z. F., Scolnick, L. R., Ash, D. E. & Christianson, D. W. Structure of a unique binuclear manganese cluster in arginase. Nature 383, 554–557 (1996).

    Article  CAS  Google Scholar 

  24. Ash, D. E., Cox, J. D. & Christianson, D. W. Arginase: a binuclear manganese metalloenzyme. Met. Ions Biol. Syst. 37, 407–428 (2000).

    CAS  Google Scholar 

  25. Jung, A., Chen, L. R., Suyemoto, M. M., Barnes, H. J. & Borst, L. B. A review of Enterococcus cecorum infection in poultry. Avian Dis. 62, 261–271 (2018).

    Article  Google Scholar 

  26. Do, T., Page, J. E. & Walker, S. Uncovering the activities, biological roles, and regulation of bacterial cell wall hydrolases and tailoring enzymes. J. Biol. Chem. 295, 3347–3361 (2020).

    Article  CAS  Google Scholar 

  27. Agar, J. N. et al. IscU as a scaffold for iron–sulfur cluster biosynthesis: sequential assembly of [2Fe–2S] and [4Fe–4S] Clusters in IscU. Biochemistry 39, 7856–7862 (2000).

    Article  CAS  Google Scholar 

  28. Davis, K. M. et al. Structures of the peptide-modifying radical SAM enzyme SuiB elucidate the basis of substrate recognition. Proc. Natl Acad. Sci. USA 114, 10420–10425 (2017).

    Article  CAS  Google Scholar 

  29. Schramma, K. R. & Seyedsayamdost, M. R. Lysine–tryptophan-crosslinked peptides produced by radical SAM enzymes in pathogenic streptococci. ACS Chem. Biol. 12, 922–927 (2017).

    Article  CAS  Google Scholar 

  30. Himes, P. M., Allen, S. E., Hwang, S. & Bowers, A. A. Production of sactipeptides in Escherichia coli: probing the substrate promiscuity of subtilosin A biosynthesis. ACS Chem. Biol. 11, 1737–1744 (2016).

    Article  CAS  Google Scholar 

  31. Hudson, G. A. et al. Bioinformatic mapping of radical S-adenosylmethionine-dependent ribosomally synthesized and post-translationally modified peptides identifies new Cα, Cβ, and Cγ-linked thioether-containing peptides. J. Am. Chem. Soc. 141, 8228–8238 (2019).

    Article  CAS  Google Scholar 

  32. Tronick, S. R. & Martinez, R. J. Methylation of the flagellin of Salmonella typhimurium. J. Bacteriol. 105, 211–219 (1971).

    Article  CAS  Google Scholar 

  33. Stocker, B. A. D., McDonough, M. W. & Ambler, R. P. A gene determining presence or absence of e-N-methyllysine in Salmonella flagellar protein. Nature 189, 556–558 (1961).

    Article  Google Scholar 

  34. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  Google Scholar 

  35. Lankau, T., Kuo, T. N. & Yu, C. H. Computational study of the degradation of S-adenosyl methionine in water. J. Phys. Chem. A 121, 505–514 (2017).

    Article  CAS  Google Scholar 

  36. Salyan, M. E. K. et al. A general liquid chromatography/mass spectroscopy-based assay for detection and quantitation of methyltransferase activity. Anal. Biochem. 349, 112–117 (2006).

    Article  CAS  Google Scholar 

  37. Fleuchot, B. et al. Rgg proteins associated with internalized small hydrophobic peptides: a new quorum-sensing mechanism in streptococci. Mol. Microbiol. 80, 1102–1119 (2011).

    Article  CAS  Google Scholar 

  38. Chang, J. C., LaSarre, B., Jimenez, J. C., Aggarwal, C. & Federle, M. J. Two group A streptococcal peptide pheromones act through opposing Rgg regulators to control biofilm development. PLoS Pathog. 7, e1002190 (2011).

    Article  CAS  Google Scholar 

  39. Flühe, L. & Marahiel, M. A. Radical S-adenosylmethionine enzyme catalyzed thioether bond formation in sactipeptide biosynthesis. Curr. Opin. Chem. Biol. 17, 605–612 (2013).

    Article  Google Scholar 

  40. Chiumento, S. et al. Ruminococcin C, a promising antibiotic produced by a human gut symbiont. Sci. Adv. 5, eaaw9969 (2019).

    Article  CAS  Google Scholar 

  41. Balty, C. et al. Ruminococcin C, an anti-clostridial sactipeptide produced by a prominent member of the human microbiota Ruminococcus gnavus. J. Biol. Chem. 294, 14512–14525 (2019).

    Article  CAS  Google Scholar 

  42. Rea, M. C. et al. Thuricin CD, a posttranslationally modified bacteriocin with a narrow spectrum of activity against Clostridium difficile. Proc. Natl Acad. Sci. USA 107, 9352–9357 (2010).

    Article  CAS  Google Scholar 

  43. Lee, H., Churey, J. J. & Worobo, R. W. Biosynthesis and transcriptional analysis of thurincin H, a tandem repeated bacteriocin genetic locus, produced by Bacillus thuringiensis SF361. FEMS Microbiol. Lett. 299, 205–213 (2009).

    Article  CAS  Google Scholar 

  44. Mo, T. et al. Thuricin Z: a narrow-spectrum sactibiotic that targets the cell membrane. Agnew. Chem. Int. Ed. 58, 18793–18797 (2019).

    Article  CAS  Google Scholar 

  45. Kawulka, K. E. et al. Structure of subtilosin A, an antimicrobial peptide from Bacillus subtilis with unusual posttranslational modifications linking cysteine sulfurs to alpha-carbons of phenylalanine and threonine. J. Am. Chem. Soc. 125, 4726–4727 (2003).

    Article  CAS  Google Scholar 

  46. Kawulka, K. E. et al. Structure of subtilosin A, a cyclic antimicrobial peptide from Bacillus subtilis with unusual sulfur to α-carbon cross-links: formation and reduction of α-thio-α-amino acid derivatives. Biochemistry 43, 3385–3395 (2004).

    Article  CAS  Google Scholar 

  47. Flühe, L. et al. Two [4Fe–4S] clusters containing radical SAM Enzyme SkfB catalyze thioether bond formation during the maturation of the sporulation killing factor. J. Am. Chem. Soc. 135, 959–962 (2013).

    Article  Google Scholar 

  48. Lui, W.-T. et al. Imaging mass spectrometry of intraspecies metabolic exchange revealed the cannibalistic factors of Bacillus subtilis. Proc. Natl Acad. Sci. USA 107, 16286–16290 (2010).

    Article  Google Scholar 

  49. Flühe, L. et al. The radical SAM enzyme AlbA catalyzes thioether bond formation in subtilosin A. Nat. Chem. Biol. 8, 350–357 (2012).

    Article  Google Scholar 

  50. Bösch, N. M. et al. Landornamides: antiviral ornithine-containing ribosomal peptides discovered through genome mining. Angew. Chem. Int. Ed. 59, 11763–11768 (2020).

    Article  Google Scholar 

  51. Mordhorst, S., Morinaka, B. I., Vagstad, A. L. & Piel, J. Posttranslationally acting arginases provide a ribosomal route to non-proteinogenic ornithine residues in diverse peptide sequences. Angew. Chem. Int. Ed. 59, 21442–21447 (2020).

    Article  CAS  Google Scholar 

  52. Walsh, C. T. Blurring the lines between ribosomal and nonribosomal peptide scaffolds. ACS Chem. Biol. 9, 1653–1661 (2014).

    Article  CAS  Google Scholar 

  53. Agarwalla, S., Kealey, J. T., Santi, D. V. & Stroud, R. M. Characterization of the 23S ribosomal RNA m5U1939 methyltransferase from Escherichia coli. J. Biol. Chem. 277, 8835–8840 (2002).

    Article  CAS  Google Scholar 

  54. Lee, T. T., Agarwalla, S. & Stroud, R. M. Crystal structure of RumA, an iron–sulfur cluster containing E. coli ribosomal RNA 5-methyluridine methyltransferase. Structure 12, 397–407 (2004).

    Article  CAS  Google Scholar 

  55. Benjdia, A. et al. Post-translational modification of ribosomally synthesized peptides by a radical SAM epimerase in Bacillus subtilis. Nature Chem 9, 698–707 (2017).

    Article  CAS  Google Scholar 

  56. Chen, Y., Wang, J., Li, G., Yang, Y. & Ding, W. Current advancements in sactipeptide natural products. Front. Chem. 9, 595991 (2021).

    Article  CAS  Google Scholar 

  57. Claverys, J.-P., Martin, B. & Håvarstein, L. S. Competence-induced fratricide in streptococci. Mol. Microbiol. 64, 1423–1433 (2007).

    Article  CAS  Google Scholar 

  58. Claverys, J.-P. & Håvarstein, L. S. Cannibalism and fratricide: mechanisms and raisons d’être. Nat. Rev. Microbiol. 5, 219–229 (2007).

    Article  CAS  Google Scholar 

  59. Bushin, L. B. & Seyedsayamdost, M. R. Guidelines for determining the structures of radical SAM enzyme-catalyzed modifications in the biosynthesis of RiPP natural products. Methods Enzymol. 606, 439–460 (2018).

    Article  CAS  Google Scholar 

  60. Gerlt, J. A. et al. Enzyme Function Initiative-Enzyme Similarity Tool (EFI-EST): a web tool for generating protein sequence similarity networks. Biochimica et Biophysica 1854, 1019–1037 (2015).

    Article  CAS  Google Scholar 

  61. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    Article  CAS  Google Scholar 

  62. Madeira, F. et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 47, W636–W641 (2019).

    Article  CAS  Google Scholar 

  63. Crooks, G. E., Hon, G., Chandonia, J.-M. & Brenner, S. E. WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190 (2004).

    Article  CAS  Google Scholar 

  64. van de Rijn, I. & Kessler, R. E. Growth characteristics of group A streptococci in a new chemically defined medium. Infect Immun. 27, 444–448 (1980).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Edward C. Taylor-Eli Lilly Fellowship in Chemistry (to K.A.C.) and the National Science Foundation (NSF CAREER Award 1847932 to M.R.S.) for support of this work.

Author information

Authors and Affiliations

Authors

Contributions

K.A.C. and M.R.S. conceived of the study. K.A.C. carried out in vitro characterization and structural elucidation of the reactions of all enzymes. B.C.C. identified the mature natural products from the native organism. K.A.C. and B.C.C. carried out bioactivity assays. K.A.C. and M.R.S. wrote the manuscript, with contributions from B.C.C.

Corresponding author

Correspondence to Mohammad R. Seyedsayamdost.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Qi Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Note 1, Tables 1–18 and Figs. 1–15.

Reporting Summary

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clark, K.A., Covington, B.C. & Seyedsayamdost, M.R. Biosynthesis-guided discovery reveals enteropeptins as alternative sactipeptides containing N-methylornithine. Nat. Chem. 14, 1390–1398 (2022). https://doi.org/10.1038/s41557-022-01063-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-022-01063-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing