Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spontaneous N2 formation by a diruthenium complex enables electrocatalytic and aerobic oxidation of ammonia

Abstract

The electrochemical conversion of ammonia to dinitrogen in a direct ammonia fuel cell (DAFC) is a necessary technology for the realization of a nitrogen economy. Previous efforts to catalyse this reaction with molecular complexes required the addition of exogenous oxidizing reagents or application of potentials greater than the thermodynamic potential for the oxygen reduction reaction—the cathodic process of a DAFC. We report a stable metal–metal bonded diruthenium complex that spontaneously produces dinitrogen from ammonia under ambient conditions. The resulting reduced diruthenium material can be reoxidized with oxygen for subsequent reactions with ammonia, demonstrating its ability to spontaneously promote both half-reactions necessary for a DAFC. The diruthenium complex also acts as a redox mediator for the electrocatalytic oxidation of ammonia to dinitrogen at potentials as low as −255 mV versus Fc0/+ and operates below the oxygen reduction reaction potential in alkaline conditions, thus achieving a thermodynamic viability relevant for the future development of DAFCs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of a nitrogen/ammonia fuel economy and progress towards catalysed DAFCs.
Fig. 2: Synthesis and structural characterization of key Ru2 compounds.
Fig. 3: Electrochemical and spectroscopic investigations of Ru2-catalysed ammonia oxidation.
Fig. 4: Equipment used and data collected in Faradic efficiency experiments.
Fig. 5: Ru2 electronic structural features and proposed mechanism of ammonia reactivity.

Similar content being viewed by others

Data availability

Crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 1945089 (7), 1945090 (2), 1945091 (4), 1945092 (3) and 2006690 (5). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. Source data for Figs. 3 and 4 and Extended Data Fig. 6 are provided with the article. Source data for Extended Data Fig. 1 can be found at https://figshare.com/articles/dataset/Berry_ED_Fig1_mnova/15060798. All other data supporting the findings of this study are available within the article and its Supplementary Information, or from the corresponding author upon reasonable request.

References

  1. Elishav, O., Lewin, D. R., Shter, G. E. & Grader, G. S. The nitrogen economy: economic feasibility analysis of nitrogen-based fuels as energy carriers. Appl. Energy 185, 183–188 (2017).

    Article  CAS  Google Scholar 

  2. Adli, N. M., Zhang, H., Mukherjee, S. & Wu, G. Review—ammonia oxidation electrocatalysis for hydrogen generation and fuel cells. J. Electrochem. Soc. 165, J3130–J3147 (2018).

    Article  CAS  Google Scholar 

  3. Lan, R., Irvine, J. T. S. & Tao, S. Ammonia and related chemicals as potential indirect hydrogen storage materials. Int. J. Hydrogen Energy 37, 1482–1494 (2012).

    Article  CAS  Google Scholar 

  4. Chen, J. G. et al. Beyond fossil fuel-driven nitrogen transformations. Science 360, eaar6611 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zhao, Y. et al. An efficient direct ammonia fuel cell for affordable carbon-neutral transportation. Joule 3, 2472–2484 (2019).

    Article  CAS  Google Scholar 

  6. Giddey, S., Badwal, S. P. S. & Kulkarni, A. Review of electrochemical ammonia production technologies and materials. Int. J. Hydrogen Energy 38, 14576–14594 (2013).

    Article  CAS  Google Scholar 

  7. Hansson, J., Brynolf, S., Fridell, E. & Lehtveer, M. The potential role of ammonia as marine fuel—based on energy systems modeling and multi-criteria decision analysis. Sustainability 12, 3265 (2020).

    Article  Google Scholar 

  8. Valera-Medina, A., Xiao, H., Owen-Jones, M., David, W. I. F. & Bowen, P. J. Ammonia for power. Prog. Energy Combust. Sci. 69, 63–102 (2018).

    Article  Google Scholar 

  9. Wang, D. B. et al. Energy-efficient nitrogen reduction to ammonia at low overpotential in aqueous electrolyte under ambient conditions. ChemSusChem 11, 3416–3422 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Imamura, K. & Kubota, J. Electrochemical membrane cell for NH3 synthesis from N2 and H2O by electrolysis at 200 to 250 °C using a Ru catalyst, hydrogen-permeable Pd membrane and phosphate-based electrolyte. Sustain. Energy Fuels 2, 1278–1286 (2018).

    Article  CAS  Google Scholar 

  11. Guo, X., Zhu, Y. & Ma, T. Lowering reaction temperature: electrochemical ammonia synthesis by coupling various electrolytes and catalysts. J. Energy Chem. 26, 1107–1116 (2017).

    Article  Google Scholar 

  12. Siddharth, K., Chan, Y., Wang, L. & Shao, M. Ammonia electro-oxidation reaction: recent development in mechanistic understanding and electrocatalyst design. Curr. Opin. Electrochem. 9, 151–157 (2018).

    Article  CAS  Google Scholar 

  13. Afif, A. et al. Ammonia-fed fuel cells: a comprehensive review. Renew. Sustain. Energy Rev. 60, 822–835 (2016).

    Article  CAS  Google Scholar 

  14. Nakajima, K., Toda, H., Sakata, K. & Nishibayashi, Y. Ruthenium-catalysed oxidative conversion of ammonia into dinitrogen. Nat. Chem. 11, 702–709 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Habibzadeh, F., Miller, S. L., Hamann, T. W. & Smith, M. R. 3rd Homogeneous electrocatalytic oxidation of ammonia to N2 under mild conditions. Proc. Natl Acad. Sci. USA 116, 2849–2853 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mahdi, R. B., Christine, G., Jeffery A., B. & Timothy H. W. Chemical and electrocatalytic ammonia oxidation by ferrocene. Preprint at https://doi.org/10.26434/chemrxiv.9729635.v1 (2019).

  17. Bhattacharya, P. et al. Catalytic ammonia oxidation to dinitrogen by hydrogen atom abstraction. Angew. Chem. Int. Ed. 58, 11618–11624 (2019).

    Article  CAS  Google Scholar 

  18. Zott, M. D., Garrido-Barros, P. & Peters, J. C. Electrocatalytic ammonia oxidation mediated by a polypyridyl iron catalyst. ACS Catal. 9, 10101–10108 (2019).

    Article  CAS  Google Scholar 

  19. Dunn, P. L., Johnson, S. I., Kaminsky, W. & Bullock, R. M. Diversion of catalytic C–N bond formation to catalytic oxidation of NH3 through modification of the hydrogen atom abstractor. J. Am. Chem. Soc. 142, 3361–3365 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Zott, M. D. & Peters, J. C. Enhanced ammonia oxidation catalysis by a low-spin iron complex featuring cis coordination sites. J. Am. Chem. Soc. 143, 7612–7616 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. A. J. Bard, L. R. F. Electrochemical Methods: Fundamentals and Applications 2nd edn (John Wiley, 2000).

  22. Lindley, B. M., Appel, A. M., Krogh-Jespersen, K., Mayer, J. M. & Miller, A. J. M. Evaluating the thermodynamics of electrocatalytic N2 reduction in acetonitrile. ACS Energy Lett. 1, 698–704 (2016).

    Article  CAS  Google Scholar 

  23. Pegis, M. L. et al. Standard reduction potentials for oxygen and carbon dioxide couples in acetonitrile and N,N-dimethylformamide. Inorg. Chem. 54, 11883–11888 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Coetzee, J. F. & Padmanabhan, G. R. Properties of bases in acetonitrile as solvent. IV. Proton acceptor power and homoconjugation of mono- and diamines. J. Am. Chem. Soc. 87, 5005–5010 (1965).

    Article  CAS  Google Scholar 

  25. Corcos, A. R., Pap, J. S., Yang, T. & Berry, J. F. A synthetic oxygen atom transfer photocycle from a diruthenium oxyanion complex. J. Am. Chem. Soc. 138, 10032–10040 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Varela-Álvarez, A. et al. Rh2(ii,iii) Catalysts with chelating carboxylate and carboxamidate supports: electronic structure and nitrene transfer reactivity. J. Am. Chem. Soc. 138, 2327–2341 (2016).

    Article  PubMed  Google Scholar 

  27. Kornecki, K. P. et al. Direct spectroscopic characterization of a transitory dirhodium donor–acceptor carbene complex. Science 342, 351 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Berry, J. F. The role of three-center/four-electron bonds in superelectrophilic dirhodium carbene and nitrene catalytic intermediates. Dalton Trans. 41, 700–713 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Chakravarty, A. R., Cotton, F. A. & Tocher, D. A. New isomeric form of the ‘M2(OC5H3NCl)4’ core: a polar arrangement of the four 6-chloro-2-hydroxypyridinato (chp) ligands in a chlorodiruthenium(ii,iii) complex, Ru2Cl(chp)4. Inorg. Chem. 24, 1263–1267 (1985).

    Article  CAS  Google Scholar 

  30. Corcos, A. R., Long, A. K. M., Guzei, I. A. & Berry, J. F. A synthetic cycle for nitrogen atom transfer featuring a diruthenium nitride intermediate. Eur. J. Inorg. Chem. 2013, 3808–3811 (2013).

    Article  CAS  Google Scholar 

  31. Corcos, A. R. & Berry, J. F. Anilinopyridinate-supported Ru2x+ (x = 5 or 6) paddlewheel complexes with labile axial ligands. Dalton Trans. 46, 5532–5539 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. Cotton, F. A., Kim, Y. & Yokochi, A. Regioisomerism displayed by the 6-chloro-2-oxopyridinate complexes of Ru24+ and Ru25+. Inorg. Chim. Acta 236, 55–61 (1995).

    Article  CAS  Google Scholar 

  33. Brown, T. R., Dolinar, B. S., Hillard, E. A., Clérac, R. & Berry, J. F. Electronic structure of Ru2(ii,ii) oxypyridinates: synthetic, structural, and theoretical insights into axial ligand binding. Inorg. Chem. 54, 8571–8589 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Besora, M., Vidossich, P., Lledós, A., Ujaque, G. & Maseras, F. Calculation of reaction free energies in solution: a comparison of current approaches. J. Phys. Chem. A 122, 1392–1399 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Weatherburn, M. W. Phenol–hypochlorite reaction for determination of ammonia. Anal. Chem. 39, 971–974 (1967).

    Article  CAS  Google Scholar 

  36. Neese, F. ORCA, an ab initio, density functional and semi-empirical program package, v.4.0.0.2 (Max Planck Institute for Chemical Energy Conversion, 2018).

  37. Neese, F., Wennmohs, F., Hansen, A. & Becker, U. Efficient, approximate and parallel Hartree–Fock and hybrid DFT calculations. A ‘chain-of-spheres’ algorithm for the Hartree–Fock exchange. Chem. Phys. 356, 98–109 (2009).

    Article  CAS  Google Scholar 

  38. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  PubMed  Google Scholar 

  39. Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    Article  CAS  Google Scholar 

  40. Lee, C., Yang, W. & Parr, R. G. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).

    Article  CAS  Google Scholar 

  41. Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Aravena, D., Neese, F. & Pantazis, D. A. Improved segmented all-electron relativistically contracted basis sets for the lanthanides. J. Chem. Theory Comput. 12, 1148–1156 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Lenthe, E. V., Baerends, E. J. & Snijders, J. G. Relativistic regular two-component Hamiltonians. J. Chem. Phys. 99, 4597–4610 (1993).

    Article  Google Scholar 

  44. Pantazis, D. A., Chen, X.-Y., Landis, C. R. & Neese, F. All-electron scalar relativistic basis sets for third-row transition metal atoms. J. Chem. Theory Comput. 4, 908–919 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Bühl, M., Reimann, C., Pantazis, D. A., Bredow, T. & Neese, F. Geometries of third-row transition-metal complexes from density-functional theory. J. Chem. Theory Comput. 4, 1449–1459 (2008).

    Article  PubMed  Google Scholar 

  46. Pantazis, D. A. & Neese, F. All-electron scalar relativistic basis sets for the lanthanides. J. Chem. Theory Comput. 5, 2229–2238 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Pantazis, D. A. & Neese, F. All-electron scalar relativistic basis sets for the actinides. J. Chem. Theory Comput. 7, 677–684 (2011).

    Article  CAS  Google Scholar 

  48. Pantazis, D. A. & Neese, F. All-electron scalar relativistic basis sets for the 6p elements. Theor. Chem. Acc. 131, 1292 (2012).

    Article  Google Scholar 

  49. York, D. M. & Karplus, M. A smooth solvation potential based on the conductor-like screening model. J. Phys. Chem. A 103, 11060–11079 (1999).

    Article  CAS  Google Scholar 

  50. PyMOL molecular graphics system, v.2.5.1 (Schrödinger, 2021).

Download references

Acknowledgements

We thank the Department of Energy for funding (DE-SC0021021). We also thank S.-C. Wang in the Hermans group as well as E. Canales and K. Rivera-Dones in the Huber group at UW-Madison for help with the mass spectrometry measurements of labelled nitrogen. We thank M. Aristov and A. Wheaton for assistance with crystallographic data. Crystallographic data were collected on a Cu Kα instrument that was funded by the NSF (CHE-1919350) and on a Mo Kα instrument funded by a generous gift from Paul and Margaret Bender.

Author information

Authors and Affiliations

Authors

Contributions

M.J.T. performed all electrochemical and spectroelectrochemical experiments and conducted the computational modelling. C.M.W. performed all synthesis and non-crystallographic characterization of diruthenium complexes, preparation of ammonia solutions, ammonia reactivity experiments and other spectroscopic experiments. T.R.B. performed preliminary synthesis and characterization on diruthenium ammine complexes that directly informed this work. S.V.P. performed crystallographic characterization of the diruthenium compounds. M.J.T., C.M.W. and J.F.B. wrote the manuscript. All authors provided feedback during the manuscript preparation and approved the final manuscript.

Corresponding author

Correspondence to John F. Berry.

Ethics declarations

Competing interests

M.J.T., C.M.W., T.R.B., S.V.P. and J.F.B. have submitted a provisional patent application based on the work described here (US patent application number P200013US01).

Additional information

Peer review information Nature Chemistry thanks Dai Oyama and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 1H-NMR spectra monitoring the reaction of 2 with ammonia in CH3CN-d3.

Left: Portion of spectra focused on the Ar-H signals in the diruthenium complex. Right: Portion of spectra focused on the NH3/NH4+ signal shifting over the course of the experiment. Spectra are collected at 1-hour intervals.

Extended Data Fig. 2 Spectroelectrochemical cell used in controlled current Coulometry experiments.

Left: A photograph of the spectroelectrochemical cell, loaded with a solution of 5 with excess ammonia in the working electrode chamber and a solution of FcPF6 sacrificial oxidant in the counter electrode chamber. Right: A schematic of the spectroelectrochemical cell detailing its assembly.

Extended Data Fig. 3 Electrode and chemical processes occurring during controlled current Coulometry.

Diruthenium species in the [Ru2]4+ oxidation state are electrochemically oxidized to the [Ru2]5+ oxidation state at the surface of the reticulated vitreous carbon (RVC) working electrode (WE). The redox potential for this transformation is −255 mV vs Fc0/+ in CH3CN. Applied potential at WE is adjusted throughout the experiment to maintain a constant oxidizing current of +0.5 mA. Exogenous ammonia in solution spontaneously reacts with [Ru2]5+ species to produce dinitrogen and ammonium while regenerating [Ru2]4+ species. The ferrocenium cation in FcPF6 is electrochemically reduced to neutral ferrocene at the surface of the platinum counter electrode (CE). The working electrode and counter electrode chambers are divided by a fine glass frit allowing for ion exchange.

Extended Data Fig. 4 Electronic structural features and proposed mechanism of ammonia reactivity with an imido intermediate.

A: DFT orbital calculation showing the Ru-Ru-NH π* LUMO in 9. B,C: DFT-calculated geometry (B) and drawn representation (C) of transition state TS2 showing the formation of an N-N bond via nucleophilic attack of NH3 on 9.

Extended Data Fig. 5 Electronic structural features and proposed mechanism of ammonia reactivity with a nitrido intermediate.

A: DFT orbital calculation showing the Ru-Ru-N π* LUMO in 10. B,C: DFT-calculated geometry (B) and drawn representation (C) of transition state TS3 showing the formation of an N-N bond via nucleophilic attack of NH3 on 10.

Extended Data Fig. 6 Titration of 2 with N2H4 in CH3CN monitored by electronic absorption spectroscopy.

The trace of absorbance at 533 nm versus equivalents of N2H4 shows a distinct end to the reaction after the addition 1.25 equivalents.

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–20, Discussion and Tables 1–18. Supplementary tables providing DFT-optimized coordinates are included in a separate Excel spreadsheet in the additional supplementary files.

Supplementary Tables

DFT-optimized cartesian coordinates for compounds 6, 6+, 8, 9, 10, TS1, TS2 and TS3.

Supplementary Data 1

Crystallographic data for compound 2. CCDC reference 1945090.

Supplementary Data 2

Crystallographic data for compound 3. CCDC reference 1945092.

Supplementary Data 3

Crystallographic data for compound 4. CCDC reference 1945091.

Supplementary Data 4

Crystallographic data for compound 5. CCDC reference 2006690.

Supplementary Data 5

Crystallographic data for compound 7. CCDC reference 1945089.

Supplementary Data 6

mnova file with raw NMR data for compounds 2, 5 and 6.

Supplementary Data 7

Statistical source data for Supplementary Fig. 8.

Supplementary Data 8

Statistical source data for Supplementary Fig. 10.

Supplementary Data 9

Statistical source data for Supplementary Fig. 11.

Supplementary Data 10

Statistical source data for Supplementary Fig. 12.

Supplementary Data 11

Statistical source data for Supplementary Fig. 13.

Supplementary Data 12

Statistical source data for Supplementary Fig. 14.

Supplementary Data 13

Statistical source data for Supplementary Fig. 15.

Supplementary Data 14

Statistical source data for Supplementary Fig. 16.

Supplementary Data 15

Statistical source data for Supplementary Fig. 17.

Supplementary Data 16

Statistical source data for Supplementary Fig. 18.

Supplementary Data 17

Statistical source data for Supplementary Fig. 19.

Supplementary Data 18

Statistical source data for Supplementary Fig. 20.

Source data

Source Data Fig. 3

Statistical source data for Fig. 3.

Source Data Fig. 4

Statistical source data for Fig. 4.

Source Data Extended Data Fig. 6

Statistical source data for Extended Data Fig. 6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trenerry, M.J., Wallen, C.M., Brown, T.R. et al. Spontaneous N2 formation by a diruthenium complex enables electrocatalytic and aerobic oxidation of ammonia. Nat. Chem. 13, 1221–1227 (2021). https://doi.org/10.1038/s41557-021-00797-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-021-00797-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing