Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Vitamin B12 produced by gut bacteria modulates cholinergic signalling

Abstract

A growing body of evidence indicates that gut microbiota influence brain function and behaviour. However, the molecular basis of how gut bacteria modulate host nervous system function is largely unknown. Here we show that vitamin B12-producing bacteria that colonize the intestine can modulate excitatory cholinergic signalling and behaviour in the host Caenorhabditis elegans. Here we demonstrate that vitamin B12 reduces cholinergic signalling in the nervous system through rewiring of the methionine (Met)/S-adenosylmethionine cycle in the intestine. We identify a conserved metabolic crosstalk between the methionine/S-adenosylmethionine cycle and the choline-oxidation pathway. In addition, we show that metabolic rewiring of these pathways by vitamin B12 reduces cholinergic signalling by limiting the availability of free choline required by neurons to synthesize acetylcholine. Our study reveals a gut–brain communication pathway by which enteric bacteria modulate host behaviour and may affect neurological health.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: B12 produced by gut bacteria suppresses the hyperactive behaviour of unc-2(gof) mutants.
Fig. 2: C. aquatica colonizes the C. elegans intestine and modulates behaviour.
Fig. 3: B12 inhibits cholinergic signalling.
Fig. 4: The B12-dependent Met/SAM cycle acts in the intestine and hypodermis to modulate behaviour.
Fig. 5: B12modulates excitatory cholinergic signalling through metabolic crosstalk between the Met/SAM cycle and the choline-oxidation pathway.
Fig. 6: Betaine can act as a methyl donor in the Met/SAM cycle.
Fig. 7: A neuronal choline transporter is required to mediate the effect of B12 on excitatory signalling.

Similar content being viewed by others

Data availability

All data files from this study have been uploaded to figshare and are freely available at https://doi.org/10.6084/m9.figshare.21197953. Source data are provided with this paper. All other data and reagents generated in this study are available from the corresponding author on reasonable request.

Code availability

The MATLAB scripts used in this study are available at https://github.com/jeremyflorman/Tracker_GUI.

References

  1. Cryan, J. F. et al. The microbiota–gut–brain axis. Physiol. Rev. 99, 1877–2013 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Zhu, S. et al. The progress of gut microbiome research related to brain disorders. J. Neuroinflammation 17, 25 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sandhu, K. V. et al. Feeding the microbiota–gut–brain axis: diet, microbiome, and neuropsychiatry. Transl. Res. 179, 223–244 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Mohajeri, M. H., La Fata, G., Steinert, R. E. & Weber, P. Relationship between the gut microbiome and brain function. Nutr. Rev. 76, 481–496 (2018).

    Article  PubMed  Google Scholar 

  5. Mitrea, L., Nemes, S. A., Szabo, K., Teleky, B. E. & Vodnar, D. C. Guts imbalance imbalances the brain: a review of gut microbiota association with neurological and psychiatric disorders. Front. Med. 9, 813204 (2022).

    Article  Google Scholar 

  6. Buffington, S. A. et al. Dissecting the contribution of host genetics and the microbiome in complex behaviors. Cell 184, 1740–1756 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Org, E. et al. Genetic and environmental control of host–gut microbiota interactions. Genome Res. 25, 1558–1569 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Montgomery, T. L. et al. Interactions between host genetics and gut microbiota determine susceptibility to CNS autoimmunity. Proc. Natl Acad. Sci. USA 117, 27516–27527 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Karl, J. P. et al. Effects of psychological, environmental and physical stressors on the gut microbiota. Front. Microbiol. 9, 2013 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ezra-Nevo, G., Henriques, S. F. & Ribeiro, C. The diet–microbiome tango: how nutrients lead the gut brain axis. Curr. Opin. Neurobiol. 62, 122–132 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Lloyd-Price, J., Abu-Ali, G. & Huttenhower, C. The healthy human microbiome. Genome Med. 8, 51 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chow, J. & Mazmanian, S. K. A pathobiont of the microbiota balances host colonization and intestinal inflammation. Cell Host Microbe 7, 265–276 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fung, T. C., Olson, C. A. & Hsiao, E. Y. Interactions between the microbiota, immune and nervous systems in health and disease. Nat. Neurosci. 20, 145–155 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fischbach, M. A. Microbiome: focus on causation and mechanism. Cell 174, 785–790 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Walter, J., Armet, A. M., Finlay, B. B. & Shanahan, F. Establishing or exaggerating causality for the gut microbiome: lessons from human microbiota-associated rodents. Cell 180, 221–232 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Berg, M. et al. Assembly of the Caenorhabditis elegans gut microbiota from diverse soil microbial environments. ISME J. 10, 1998–2009 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Samuel, B. S., Rowedder, H., Braendle, C., Felix, M. A. & Ruvkun, G. Caenorhabditis elegans responses to bacteria from its natural habitats. Proc. Natl Acad. Sci. USA 113, E3941–E3949 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dirksen, P. et al. The native microbiome of the nematode Caenorhabditis elegans: gateway to a new host–microbiome model. BMC Biol. 14, 38 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Watson, E. et al. Interspecies systems biology uncovers metabolites affecting C. elegans gene expression and life history traits. Cell 156, 1336–1337 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, J., Holdorf, A. D. & Walhout, A. J. C. elegans and its bacterial diet as a model for systems-level understanding of host–microbiota interactions. Curr. Opin. Biotechnol. 46, 74–80 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Seth, P. et al. Regulation of microRNA machinery and development by interspecies S-nitrosylation. Cell 176, 1014–1025 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Donato, V. et al. Bacillus subtilis biofilm extends Caenorhabditis elegans longevity through downregulation of the insulin-like signalling pathway. Nat. Commun. 8, 14332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Smolentseva, O. et al. Mechanism of biofilm-mediated stress resistance and lifespan extension in C. elegans. Sci. Rep. 7, 7137 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  24. O’Donnell, M. P., Fox, B. W., Chao, P. H., Schroeder, F. C. & Sengupta, P. A neurotransmitter produced by gut bacteria modulates host sensory behaviour. Nature 583, 415–420 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Goya, M. E. et al. Probiotic Bacillus subtilis protects against α-synuclein aggregation in C. elegans. Cell Rep. 30, 367–3807 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. MacNeil, L. T., Watson, E., Arda, H. E., Zhu, L. J. & Walhout, A. J. Diet-induced developmental acceleration independent of TOR and insulin in C. elegans. Cell 153, 240–252 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Coolon, J. D., Jones, K. L., Todd, T. C., Carr, B. C. & Herman, M. A. Caenorhabditis elegans genomic response to soil bacteria predicts environment-specific genetic effects on life history traits. PLoS Genet. 5, e1000503 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Huang, Y. C. et al. Gain-of-function mutations in the UNC-2/CaV2à channel lead to excitation-dominant synaptic transmission in Caenorhabditis elegans. eLife 8, e45905 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Arzani, M. et al. Gut–brain axis and migraine headache: a comprehensive review. J. Headache Pain 21, 15 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Dahlin, M. & Prast-Nielsen, S. The gut microbiome and epilepsy. EBioMedicine 44, 741–746 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Golubeva, A. V. et al. Microbiota-related changes in bile acid & tryptophan metabolism are associated with gastrointestinal dysfunction in a mouse model of autism. EBioMedicine 24, 166–178 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  32. van Hemert, S. et al. Migraine associated with gastrointestinal disorders: review of the literature and clinical implications. Front. Neurol. 5, 241 (2014).

    PubMed  PubMed Central  Google Scholar 

  33. Lum, G. R., Olson, C. A. & Hsiao, E. Y. Emerging roles for the intestinal microbiome in epilepsy. Neurobiol. Dis. 135, 104576 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Sharon, G. et al. Human gut microbiota from autism spectrum disorder promote behavioral symptoms in mice. Cell 177, 1600–1618 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Swierczek, N. A., Giles, A. C., Rankin, C. H. & Kerr, R. A. High-throughput behavioral analysis in C. elegans. Nat. Methods 8, 592–598 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Estes, K. A., Dunbar, T. L., Powell, J. R., Ausubel, F. M. & Troemel, E. R. bZIP transcription factor zip-2 mediates an early response to Pseudomonas aeruginosa infection in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 107, 2153–2158 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Martens, J. H., Barg, H., Warren, M. J. & Jahn, D. Microbial production of vitamin B12. Appl. Microbiol. Biotechnol. 58, 275–285 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Green, R. et al. Vitamin B12 deficiency. Nat. Rev. Dis. Prim. 3, 17040 (2017).

    Article  PubMed  Google Scholar 

  39. Arda, H. E. et al. Functional modularity of nuclear hormone receptors in a Caenorhabditis elegans metabolic gene regulatory network. Mol. Syst. Biol. 6, 367 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bender, D. A. Nutritional Biochemistry of the Vitamins (Cambridge:Cambridge University Press) (2003).

  41. LeBlanc, J. G. et al. Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr. Opin. Biotechnol. 24, 160–168 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Watanabe, F. & Bito, T. Vitamin B12 sources and microbial interaction. Exp. Biol. Med. 243, 148–158 (2018).

    Article  CAS  Google Scholar 

  43. Bito, T., Matsunaga, Y., Yabuta, Y., Kawano, T. & Watanabe, F. Vitamin B12 deficiency in Caenorhabditis elegans results in loss of fertility, extended life cycle, and reduced lifespan. FEBS Open Bio 3, 112–117 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nguyen, M., Alfonso, A., Johnson, C. D. & Rand, J. B. Caenorhabditis elegans mutants resistant to inhibitors of acetylcholinesterase. Genetics 140, 527–535 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kennedy, D. O. B vitamins and the brain: mechanisms, dose and efficacy–a review. Nutrients 8, 68 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Duerr, J. S. et al. The cat-1 gene of Caenorhabditis elegans encodes a vesicular monoamine transporter required for specific monoamine-dependent behaviors. J. Neurosci. 19, 72–84 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Culotti, J. G., Von Ehrenstein, G., Culotti, M. R. & Russell, R. L. A second class of acetylcholinesterase-deficient mutants of the nematode Caenorhabditis elegans. Genetics 97, 281–305 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jospin, M. et al. A neuronal acetylcholine receptor regulates the balance of muscle excitation and inhibition in Caenorhabditis elegans. PLoS Biol. 7, e1000265 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Becchetti, A., Aracri, P., Meneghini, S., Brusco, S. & Amadeo, A. The role of nicotinic acetylcholine receptors in autosomal dominant nocturnal frontal lobe epilepsy. Front. Physiol. 6, 22 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Florman, J. T. & Alkema, M. J. Co-transmission of neuropeptides and monoamines choreograph the C. elegans escape response. PLoS Genet. 18, e1010091 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Richmond, J. E. & Jorgensen, E. M. One GABA and two acetylcholine receptors function at the C. elegans neuromuscular junction. Nat. Neurosci. 2, 791–797 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Qian, K. Y. et al. Male pheromones modulate synaptic transmission at the C. elegans neuromuscular junction in a sexually dimorphic manner. eLife 10, e67170 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pierce-Shimomura, J. T. et al. Genetic analysis of crawling and swimming locomotory patterns in C. elegans. Proc. Natl Acad. Sci. USA 105, 20982–20987 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ghosh, R. & Emmons, S. W. Episodic swimming behavior in the nematode C. elegans. J. Exp. Biol. 211, 3703–3711 (2008).

    Article  PubMed  Google Scholar 

  55. Giese, G. E. et al. Caenorhabditis elegans methionine/S-adenosylmethionine cycle activity is sensed and adjusted by a nuclear hormone receptor. eLife 9, e60259 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Li, Y., Na, K., Lee, H. J., Lee, E. Y. & Paik, Y. K. Contribution of sams-1 and pmt-1 to lipid homoeostasis in adult Caenorhabditis elegans. J. Biochem. 149, 529–538 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Walker, A. K. et al. A conserved SREBP-1/phosphatidylcholine feedback circuit regulates lipogenesis in metazoans. Cell 147, 840–852 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Moustafa, A. A., Hewedi, D. H., Eissa, A. M., Frydecka, D. & Misiak, B. Homocysteine levels in schizophrenia and affective disorders-focus on cognition. Front. Behav. Neurosci. 8, 343 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Puig-Alcaraz, C., Fuentes-Albero, M., Calderon, J., Garrote, D. & Cauli, O. Increased homocysteine levels correlate with the communication deficit in children with autism spectrum disorder. Psychiatry Res. 229, 1031–1037 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. Obeid, R., McCaddon, A. & Herrmann, W. The role of hyperhomocysteinemia and B-vitamin deficiency in neurological and psychiatric diseases. Clin. Chem. Lab. Med. 45, 1590–1606 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Finkelstein, J. D. The metabolism of homocysteine: pathways and regulation. Eur. J. Pediatr. 157, S40–S44 (1998).

    Article  CAS  PubMed  Google Scholar 

  62. Shinohara, Y., Hasegawa, H., Ogawa, K., Tagoku, K. & Hashimoto, T. Distinct effects of folate and choline deficiency on plasma kinetics of methionine and homocysteine in rats. Metabolism 55, 899–906 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Mato, J. M., Corrales, F. J., Lu, S. C. & Avila, M. A. S-Adenosylmethionine: a control switch that regulates liver function. FASEB J. 16, 15–26 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Xue, G. P. & Snoswell, A. M. Comparative studies on the methionine synthesis in sheep and rat tissues. Comp. Biochem. Physiol. B 80, 489–494 (1985).

    Article  CAS  PubMed  Google Scholar 

  65. Ueland, P. M. Choline and betaine in health and disease. J. Inherit. Metab. Dis. 34, 3–15 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. da Costa, K. A., Gaffney, C. E., Fischer, L. M. & Zeisel, S. H. Choline deficiency in mice and humans is associated with increased plasma homocysteine concentration after a methionine load. Am. J. Clin. Nutr. 81, 440–444 (2005).

    Article  PubMed  Google Scholar 

  67. Birks, R. I. & Fitch, J. G. Storage and release of acetylcholine in a sympathetic ganglion. J. Physiol. 240, 125–134 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Birks, R. I. & Macintosh, F. C. Acetylcholine metabolism at nerve-endings. Br. Med. Bull. 13, 157–161 (1957).

    Article  CAS  PubMed  Google Scholar 

  69. Evans, J. C. et al. Betaine-homocysteine methyltransferase: zinc in a distorted barrel. Structure 10, 1159–1171 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Wasmuth, J., Schmid, R., Hedley, A. & Blaxter, M. On the extent and origins of genic novelty in the phylum Nematoda. PLoS Negl. Trop. Dis. 2, e258 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Schwahn, B. C. et al. Betaine rescue of an animal model with methylenetetrahydrofolate reductase deficiency. Biochem. J. 382, 831–840 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Liu, R. et al. MTHFR C677T polymorphism and migraine risk: a meta-analysis. J. Neurol. Sci. 336, 68–73 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Azimova, J. E. et al. Effects of MTHFR gene polymorphism on the clinical and electrophysiological characteristics of migraine. BMC Neurol. 13, 103 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Maydan, J. S. et al. Efficient high-resolution deletion discovery in Caenorhabditis elegans by array comparative genomic hybridization. Genome Res. 17, 337–347 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Peden, A. S. et al. Betaine acts on a ligand-gated ion channel in the nervous system of the nematode C. elegans. Nat. Neurosci. 16, 1794–1801 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hardege, I. et al. Neuronally produced betaine acts via a ligand-gated ion channel to control behavioral states. Proc. Natl Acad. Sci. USA 119, e2201783119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hansen, T. V. A. et al. The Caenorhabditis elegans DEG-3/DES-2 channel is a betaine-gated receptor insensitive to monepantel. Molecules 27, 312 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Rosas-Rodriguez, J. A. & Valenzuela-Soto, E. M. The glycine betaine role in neurodegenerative, cardiovascular, hepatic, and renal diseases: insights into disease and dysfunction networks. Life Sci. 285, 119943 (2021).

    Article  CAS  PubMed  Google Scholar 

  79. Simon, J. R. & Kuhar, M. G. Impulse-flow regulation of high affinity choline uptake in brain cholinergic nerve terminals. Nature 255, 162–163 (1975).

    Article  CAS  PubMed  Google Scholar 

  80. Matthies, D. S., Fleming, P. A., Wilkes, D. M. & Blakely, R. D. The Caenorhabditis elegans choline transporter CHO-1 sustains acetylcholine synthesis and motor function in an activity-dependent manner. J. Neurosci. 26, 6200–6212 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mullen, G. P. et al. Choline transport and de novo choline synthesis support acetylcholine biosynthesis in Caenorhabditis elegans cholinergic neurons. Genetics 177, 195–204 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kon, S. K. & Porter, J. W. The intestinal synthesis of vitamins in the ruminant. Vitam. Horm. 12, 53–68 (1954).

    Article  CAS  PubMed  Google Scholar 

  83. McDonagh, A., Crew, J. & van der Linden, A. M. Dietary vitamin B12 regulates chemosensory receptor gene expression via the MEF2 transcription factor in Caenorhabditis elegans. G3 12, jkac107 (2022).

  84. Wei, W. & Ruvkun, G. Lysosomal activity regulates Caenorhabditis elegans mitochondrial dynamics through vitamin B12 metabolism. Proc. Natl Acad. Sci. USA 117, 19970–19981 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Akduman, N. et al. Bacterial vitamin B12 production enhances nematode predatory behavior. ISME J. 14, 1494–1507 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Albert, M. J., Mathan, V. I. & Baker, S. J. Vitamin B12 synthesis by human small intestinal bacteria. Nature 283, 781–782 (1980).

    Article  CAS  PubMed  Google Scholar 

  87. Baker, S. J. Contribution of the microflora of the small intestine to the vitamin B12 nutriture of man. Nutr. Rev. 39, 147–148 (1981).

    Article  CAS  PubMed  Google Scholar 

  88. Hill, M. J. Intestinal flora and endogenous vitamin synthesis. Eur. J. Cancer Prev. 6, S43–S45 (1997).

    Article  PubMed  Google Scholar 

  89. Kolhouse, J. F. & Allen, R. H. Recognition of two intracellular cobalamin binding proteins and their identification as methylmalonyl-CoA mutase and methionine synthetase. Proc. Natl Acad. Sci. USA 74, 921–925 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Evans, J. C. et al. Structures of the N-terminal modules imply large domain motions during catalysis by methionine synthase. Proc. Natl Acad. Sci. USA 101, 3729–3736 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Jope, R. S. High affinity choline transport and acetylCoA production in brain and their roles in the regulation of acetylcholine synthesis. Brain Res. 180, 313–344 (1979).

    Article  CAS  PubMed  Google Scholar 

  92. Ferguson, S. M. et al. Lethal impairment of cholinergic neurotransmission in hemicholinium-3-sensitive choline transporter knockout mice. Proc. Natl Acad. Sci. USA 101, 8762–8767 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hartmann, J., Kiewert, C., Duysen, E. G., Lockridge, O. & Klein, J. Choline availability and acetylcholine synthesis in the hippocampus of acetylcholinesterase-deficient mice. Neurochem. Int. 52, 972–978 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Koppen, A., Klein, J., Erb, C. & Loffelholz, K. Acetylcholine release and choline availability in rat hippocampus: effects of exogenous choline and nicotinamide. J. Pharmacol. Exp. Ther. 282, 1139–1145 (1997).

    CAS  PubMed  Google Scholar 

  95. Cohen, E. L. & Wurtman, R. J. Brain acetylcholine: control by dietary choline. Science 191, 561–562 (1976).

    Article  CAS  PubMed  Google Scholar 

  96. Molloy, A. M. et al. Maternal vitamin B12 status and risk of neural tube defects in a population with high neural tube defect prevalence and no folic acid fortification. Pediatrics 123, 917–923 (2009).

    Article  PubMed  Google Scholar 

  97. Dror, D. K. & Allen, L. H. Effect of vitamin B12 deficiency on neurodevelopment in infants: current knowledge and possible mechanisms. Nutr. Rev. 66, 250–255 (2008).

    Article  PubMed  Google Scholar 

  98. Shaik, M. M., Tan, H. L., Kamal, M. A. & Gan, S. H. Do folate, vitamins B6 and B12 play a role in the pathogenesis of migraine? The role of pharmacoepigenomics. CNS Neurol. Disord. Drug Targets 13, 828–835 (2014).

    Article  CAS  PubMed  Google Scholar 

  99. Mitra, S., Natarajan, R., Ziedonis, D. & Fan, X. Antioxidant and anti-inflammatory nutrient status, supplementation, and mechanisms in patients with schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 78, 1–11 (2017).

    Article  CAS  PubMed  Google Scholar 

  100. Pineles, S. L., Avery, R. A. & Liu, G. T. Vitamin B12 optic neuropathy in autism. Pediatrics 126, e967–e970 (2010).

    Article  PubMed  Google Scholar 

  101. Nelson, S. B. & Valakh, V. Excitatory/inhibitory balance and circuit homeostasis in autism spectrum disorders. Neuron 87, 684–698 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Vecchia, D. & Pietrobon, D. Migraine: a disorder of brain excitatory–inhibitory balance? Trends Neurosci. 35, 507–520 (2012).

    Article  CAS  PubMed  Google Scholar 

  103. Eichler, S. A. & Meier, J. C. E–I balance and human diseases—from molecules to networking. Front Mol. Neurosci. 1, 2 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Weisburg, W. G., Barns, S. M., Pelletier, D. A. & Lane, D. J. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173, 697–703 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Edelstein, A. D. et al. Advanced methods of microscope control using muManager software. J. Biol. Methods 1, e10 (2014).

    Article  PubMed  Google Scholar 

  106. Kamath, R. S. & Ahringer, J. Genome-wide RNAi screening in Caenorhabditis elegans. Methods 30, 313–321 (2003).

    Article  CAS  PubMed  Google Scholar 

  107. Hulo, N. et al. The PROSITE database. Nucleic Acids Res. 34, D227–D230 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Lemoine, F. et al. NGPhylogeny.fr: new generation phylogenetic services for non-specialists. Nucleic Acids Res. 47, W260–W265 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Yamada, K., Yamada, S., Tobimatsu, T. & Toraya, T. Heterologous high level expression, purification, and enzymological properties of recombinant rat cobalamin-dependent methionine synthase. J. Biol. Chem. 274, 35571–35576 (1999).

    Article  CAS  PubMed  Google Scholar 

  110. Garrow, T. A. Purification, kinetic properties, and cDNA cloning of mammalian betaine-homocysteine methyltransferase. J. Biol. Chem. 271, 22831–22838 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Caenorhabditis Genetics Center, which is funded by the NIH Office of Research Infrastructure Programs (P40 OD010440), for some of the worm and bacterial strains. We thank B. Samuel, H. Schulenburg, M. Shapira, V. Ambros and M. Treinin for bacterial strains; V. Budnik, A. Byrne, A. Walker and C. Vance for helpful discussions; and W. Joyce for technical support. This work was supported in part by National Institutes of Health grant numbers R01NS107475 and R01GM140480 (M.J.A.), DK068429 (A.J.M.W.), 1R35GM131877 (F.C.S.) and a grant from the Riccio Fund for Neuroscience (M.J.A. and A.J.M.W.). F.C.S. is a Faculty Scholar of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

W.K.K., J.T.F., B.W.F., A.A. and A.T. performed the experiments and analysed the data. W.K.K., J.T.F., B.W.F., F.C.S., A.J.M.W. and M.J.A. designed the experiments. W.K.K. and M.J.A. conceived the study and wrote the paper.

Corresponding author

Correspondence to Mark J. Alkema.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Cell Biology thanks Mauro Costa-Mattioli and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Effects of different bacterial diets on growth, immune response and acdh-1 expression of C. elegans.

a, Growth rate as indicated by body length of unc-2(gof) mutants grown on the indicated bacterial strains for 24 h (mean ± s.e.m., n = 3, one-way ANOVA with Dunnett’s multiple comparison). b, Fluorescence values of immune reporter Pirg-1::GFP after 24 h exposure to indicated bacterial strains. Pathogenic strain P. aeruginosa 14 was included as a positive control (mean ± s.e.m., n = 3, one-way ANOVA with Dunnett’s multiple comparison). c, Representative DIC and fluorescence images of Pacdh-1::GFP animals fed different bacterial diets for 24 h. Shades of green represent relative GFP expression levels, ‘High’ indicates strong fluorescence throughout the intestine as in the OP50 shown, ‘Low’ indicates barely detectable fluorescence as in the Comamonas shown, ‘Moderate’ indicates visible fluorescence but weaker compared to the GFP signal on OP50 (n = 3 biologically independent samples with similar results). Scale bar, 300 µm. d, Growth rate as indicated by body length of wild-type and unc-2(gof) mutants fed OP50, OP50 with 64 nM B12, Comamonas, or Comamonas cbiAΔ for 24 h (mean ± s.e.m., n = 3, one-way ANOVA with Dunnett’s multiple comparison). e, Reversals of wild-type and unc-2(gof) mutants fed OP50, Comamonas, Comamonas cbiAΔ, or Comamonas cbiAΔ with 64 nM B12 for 24 h (mean ± s.e.m., one-way ANOVA with Dunnett’s multiple comparison). f, Growth rate as indicated by body length of wild-type and unc-2(gof) mutants fed live or heat-killed OP50 ± 64 nM B12 for 24 h (mean ± s.e.m., n = 3, one-way ANOVA with Tukey’s multiple comparison). Source numerical data are provided.

Source data

Extended Data Fig. 2 Antibiotic susceptibility for C. aquatica gut bacteria elimination.

a, Bacterial CFU per animal from unc-2(gof) mutants grown on Comamonas treated with the indicated concentrations of kanamycin for 24 h (mean ± s.e.m., n = 3, one-way ANOVA with Dunnett’s multiple comparison). b, Reversal frequency of unc-2(gof) mutants grown on OP50 with indicated concentrations of kanamycin for 24 h (mean ± s.e.m., one-way ANOVA with Dunnett’s multiple comparison). c, Bacterial colonies of OP50 and Comamonas isolated the worm gut. Bacterial colonies were isolated and identified by 16 S rRNA gene using 27 f and 1492r primers (Methods) (n = 21 independent experiments with similar results). Source numerical data are provided.

Source data

Extended Data Fig. 3 B12 reduces cholinergic signalling especially under conditions of increased acetylcholine release.

a, Reversal frequency of unc-2(gof) and cat-1(ok411);unc-2(gof) mutants fed OP50 ± 64 nM B12 (mean ± s.e.m., two-way ANOVA with Tukey’s multiple comparison). b, Quantification of locomotion speed of wild-type and ace-1(p1000);ace-2(g72) mutants fed OP50, OP50 with 64 nM B12, Comamonas, or Comamonas cbiAΔ for 24 h (mean ± s.e.m., n = 4, two-way ANOVA with Tukey’s multiple comparison). c-f, Quantification of reversal frequency (c), locomotion speed (d), head bending (e), and body bending (f) of wild-type and unc-2(gof) mutants fed OP50 ± 64 nM B12 for 24 h (mean ± s.e.m., two-way ANOVA with Tukey’s multiple comparison). g, Quantification of paralysis percentage of wild-type animals fed OP50 on 1 mM aldicarb-containing NGM agar plates or M9 liquid buffer (mean ± s.e.m., n = 4 (crawling on agar), n = 5 (swimming on liquid), two-way ANOVA with Tukey’s multiple comparison). Source numerical data are provided.

Source data

Extended Data Fig. 4 B12 regulates C. elegans behaviour and growth through Met/SAM cycle.

a, Reversals of unc-2(gof), sams-1(ok2946);unc-2(gof), cbs-2(ok666);unc-2(gof), pcca-1(ok2282) unc-2(gof), or mce-1(ok243);unc-2(gof) mutants fed OP50 ± B12 for 24 h (mean ± s.e.m., two-way ANOVA with Tukey’s multiple comparison). b, Growth rate of unc-2(gof), mmcm-1(ok1637);unc-2(gof), metr-1(ok521);unc-2(gof), sams-1(ok2946);unc-2(gof) mutants fed OP50 ± B12 for 24 h (mean ± s.e.m., n = 3, two-way ANOVA with Tukey’s multiple comparison). c, Quantification of paralysis percentage of unc-2(gof) and sams-1(ok2946);unc-2(gof) mutants fed OP50 ± B12 on 1 mM aldicarb (mean ± s.e.m., n = 4, two-way ANOVA with Tukey’s multiple comparison). d, Quantification of acetylcholine in unc-2(gof) mutants fed OP50 ± B12 for 24 h (mean ± s.e.m., one-way ANOVA with Dunnett’s multiple comparison). e, Quantification of acetylcholine in WT and metr-1(ok521) mutants fed OP50 ± B12 for 24 h (mean ± s.e.m., two-way ANOVA with Tukey’s multiple comparison). f, Quantification of methionine (Met) in wild-type, metr-1(ok521), unc-2(gof), metr-1(ok521);unc-2(gof) mutants fed OP50 ± B12 for 24 h (mean ± s.e.m., two-way ANOVA with Tukey’s multiple comparison). g, Growth rate of metr-1(ok521);unc-2(gof) mutants expressing metr-1 cDNA driven by the indicated tissue-specific promoter fed OP50 ± B12 for 24 h (mean ± s.e.m., n = 3, two-way ANOVA with Tukey’s multiple comparison). h-i, Growth rate (h) and reversals (i) of unc-2(gof) mutants fed OP50 with the indicated metabolites for 24 h (mean ± s.e.m., n = 3 (h), n indicated (i), one-way ANOVA with Dunnett’s multiple comparison). j,k, Quantification of homocysteine (Hcy) (j), S-adenosylhomocysteine (SAH) (k) in wild-type, metr-1(ok521), unc-2(gof), metr-1(ok521);unc-2(gof) mutants fed OP50 ± B12 for 24 h (mean ± s.e.m., two-way ANOVA with Tukey’s multiple comparison). Source numerical data are provided.

Source data

Extended Data Fig. 5 Choline metabolism is linked to the Met/SAM cycle.

a, Growth rate as indicated by body length of unc-2(gof) mutants fed OP50 ± 64 nM B12 with 30 mM choline for 24 h (mean ± s.e.m., n = 3, two-way ANOVA with Tukey’s multiple comparison). b, Expression pattern of Palh-9::GFP in the intestine, hypodermis, and RIM neurons (n = 3 biologically independent samples with similar results). Scale bar, 100 µm. c, Growth rate as indicated by body length of unc-2(gof) mutants subjected to RNAi knockdown of chdh-1 or alh-9 fed OP50 ± 64 nM B12 for 24 h (mean ± s.e.m., n = 3, two-way ANOVA with Tukey’s multiple comparison). Source numerical data are provided.

Source data

Extended Data Fig. 6 In vitro activity assay of METR-1.

a, SDS–PAGE of purified METR-1 proteins. Purity of immunopurified GFP-tagged METR-1 protein was analysed with 4–10% polyacrylamide gels electrophoresis under denaturing conditions. Panels show silver staining (left) and western blot stained with a GFP antibody (right). Arrowhead indicates METR-1::GFP protein (molecular weight ~ 166 kDa). (n = 3 independent experiments with similar results) b, Methionine synthase activity of the purified METR-1::GFP protein was assayed in the presence of 5-methyltetrahydrofolate (5-meTHF) or betaine as a methyl donor ± SAM and DTT. Enzyme reaction was performed in 50 mM Tris-HCl buffer (pH 7.5) at 25 °C for 6 h (Methods) (mean ± s.e.m., one-way ANOVA with Dunnett’s multiple comparison). Source numerical data and source blot images are provided.

Source data

Extended Data Fig. 7 A neuronal choline transporter is required to mediate the effect of B12 on excitatory transmission.

a, Reversal frequency of unc-2(gof), acr-23(ok2804);unc-2(gof), or lgc-41(sy1494)unc-2(gof) mutants fed OP50 ± 64 nM B12 for 24 h (mean ± s.e.m., two-way ANOVA with Tukey’s multiple comparison). b, Reversal frequency of unc-2(gof) or deg-3(u701);unc-2(gof) mutants fed OP50 ± 64 nM B12 for 24 h (mean ± s.e.m., two-way ANOVA with Tukey’s multiple comparison). c, Reversal frequency of unc-2(gof) mutants fed OP50, OP50 with B12 (64 nM), OP50 with betaine (75 mM), or OP50 with both B12 and betaine (mean ± s.e.m., two-way ANOVA with Tukey’s multiple comparison). d, Growth rate as indicated by body length of unc-2(gof) and cho-1(tm373);unc-2(gof) mutants fed OP50 ± 64 nM B12 for 24 h (mean ± s.e.m., n = 3, two-way ANOVA with Tukey’s multiple comparison). Source numerical data are provided.

Source data

Supplementary information

Source data

Source Data Fig. 1

Source numerical data.

Source Data Fig. 2

Source numerical data.

Source Data Fig. 3

Source numerical data.

Source Data Fig. 4

Source numerical data.

Source Data Fig. 5

Source numerical data.

Source Data Fig. 6

Source numerical data.

Source Data Fig. 7

Source numerical data.

Source Data Extended Data Fig. 1

Source numerical data.

Source Data Extended Data Fig. 2

Source numerical data.

Source Data Extended Data Fig. 3

Source numerical data.

Source Data Extended Data Fig. 4

Source numerical data.

Source Data Extended Data Fig. 5

Source numerical data.

Source Data Extended Data Fig. 6

Source numerical data, and unprocessed gel and blot.

Source Data Extended Data Fig. 7

Source numerical data.

Source Data Extended Data Fig. 6

Source data for Extended Data Fig. 6a, and unprocessed gel and blot

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, W.K., Florman, J.T., Araya, A. et al. Vitamin B12 produced by gut bacteria modulates cholinergic signalling. Nat Cell Biol 26, 72–85 (2024). https://doi.org/10.1038/s41556-023-01299-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41556-023-01299-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing