Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Low-cost and scalable projected light-sheet microscopy for the high-resolution imaging of cleared tissue and living samples

Abstract

Light-sheet fluorescence microscopy (LSFM) is a widely used technique for imaging cleared tissue and living samples. However, high-performance LSFM systems are typically expensive and not easily scalable. Here we introduce a low-cost, scalable and versatile LSFM framework, which we named ‘projected light-sheet microscopy’ (pLSM), with high imaging performance and small device and computational footprints. We characterized the capabilities of pLSM, which repurposes readily available consumer-grade components, optimized optics, over-network control architecture and software-driven light-sheet modulation, by performing high-resolution mapping of cleared mouse brains and of post-mortem pathological human brain samples, and via the molecular phenotyping of brain and blood-vessel organoids derived from human induced pluripotent stem cells. We also report a method that leverages pLSM for the live imaging of the dynamics of sparsely labelled multi-layered bacterial pellicle biofilms at an air–liquid interface. pLSM can make high-resolution LSFM for biomedical applications more accessible, affordable and scalable.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Implementation of projected light-sheet microscopy.
Fig. 2: Characterization of projected light-sheet microscopy.
Fig. 3: High-resolution pLSM imaging and quantitative analysis of intact mouse brain samples cleared with iDISCO.
Fig. 4: High-resolution pLSM imaging of CLARITY-cleared mouse Thy1-eYFP brain.
Fig. 5: Rapid, high-resolution pLSM imaging of large post-mortem human brain samples.
Fig. 6: Phenotyping of multiple hiPS cell-derived brain and vessel organoids.
Fig. 7: Mapping the dynamic layered architecture of sparsely labelled (2.5%) bacterial pellicle biofilms.

Similar content being viewed by others

Data availability

The main data supporting the results in this study are available within the paper and its Supplementary information. All the raw data are available from the corresponding author on reasonable request. Source data are provided with this paper.

Code availability

All the code is made available publicly as a GitHub repository at https://github.com/tomerlab/pLSM-Control.

References

  1. Stelzer, E. H. K. et al. Light sheet fluorescence microscopy. Nat. Rev. Methods Prim. 1, 1–25 (2021).

    Google Scholar 

  2. Tomer, R., Ye, L., Hsueh, B. & Deisseroth, K. Advanced CLARITY for rapid and high-resolution imaging of intact tissues. Nat. Protoc. 9, 1682–1697 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tomer, R. et al. SPED light sheet microscopy: fast mapping of biological system structure and function. Cell 163, 1796–1806 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Migliori, B. et al. Light sheet theta microscopy for rapid high-resolution imaging of large biological samples. BMC Biol. 16, 57 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dodt, H.-U. et al. Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nat. Methods 4, 331–336 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Glaser, A. K. et al. A hybrid open-top light-sheet microscope for versatile multi-scale imaging of cleared tissues. Nat. Methods 19, 613–619 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen, Y. et al. A versatile tiling light sheet microscope for imaging of cleared tissues. Cell Rep. 33, 108349 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Gao, R. et al. Cortical column and whole-brain imaging with molecular contrast and nanoscale resolution. Science 363, eaau8302 (2019).

  9. Chakraborty, T. et al. Light-sheet microscopy of cleared tissues with isotropic, subcellular resolution. Nat. Methods 16, 1109–1113 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dean, K. M., Roudot, P., Welf, E. S., Danuser, G. & Fiolka, R. Deconvolution-free subcellular imaging with axially swept light sheet microscopy. Biophys. J. 108, 2807–2815 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tomer, R., Khairy, K., Amat, F. & Keller, P. J. Quantitative high-speed imaging of entire developing embryos with simultaneous multiview light-sheet microscopy. Nat. Methods 9, 755–763 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Voleti, V. et al. Real-time volumetric microscopy of in vivo dynamics and large-scale samples with SCAPE 2.0. Nat. Methods 16, 1054–1062 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bouchard, M. B. et al. Swept confocally-aligned planar excitation (SCAPE) microscopy for high-speed volumetric imaging of behaving organisms. Nat. Photon. 9, 113–119 (2015).

    Article  CAS  Google Scholar 

  14. Planchon, T. A. et al. Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination. Nat. Methods 8, 417–423 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen, B.-C. et al. Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution. Science 346, 1257998 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Pitrone, P. G. et al. OpenSPIM: an open-access light-sheet microscopy platform. Nat. Methods 10, 598–599 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gualda, E. J. et al. OpenSpinMicroscopy: an open-source integrated microscopy platform. Nat. Methods 10, 599–600 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Voigt, F. F. et al. The mesoSPIM initiative: open-source light-sheet microscopes for imaging cleared tissue. Nat. Methods 16, 1105–1108 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vladimirov, N. et al. The benchtop mesoSPIM: a next-generation open-source light-sheet microscope for large cleared samples. Nat. Commun. 15, 2679 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Remacha, E., Friedrich, L., Vermot, J. & Fahrbach, F. O. How to define and optimize axial resolution in light-sheet microscopy: a simulation-based approach. Biomed. Opt. Express 11, 8–26 (2020).

    Article  PubMed  Google Scholar 

  21. Fu, Q., Martin, B. L., Matus, D. Q. & Gao, L. Imaging multicellular specimens with real-time optimized tiling light-sheet selective plane illumination microscopy. Nat. Commun. 7, 11088 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Datta, M. S. et al. Whole-brain mapping reveals the divergent impact of ketamine on the dopamine system. Cell Rep. 42, 113491 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lerner, T. N. et al. Intact-brain analyses reveal distinct information carried by SNc dopamine subcircuits. Cell 162, 635–647 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Squair, J. W. et al. Recovery of walking after paralysis by regenerating characterized neurons to their natural target region. Science 381, 1338–1345 (2023).

    Article  CAS  PubMed  Google Scholar 

  25. Tanaka, N. et al. Whole-tissue biopsy phenotyping of three-dimensional tumours reveals patterns of cancer heterogeneity. Nat. Biomed. Eng. 1, 796–806 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Renier, N. et al. iDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging. Cell 159, 896–910 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Chung, K. et al. Structural and molecular interrogation of intact biological systems. Nature 497, 332–337 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Garritsen, O., van Battum, E. Y., Grossouw, L. M. & Pasterkamp, R. J. Development, wiring and function of dopamine neuron subtypes. Nat. Rev. Neurosci. https://doi.org/10.1038/s41583-022-00669-3 (2023).

  29. Kirst, C. et al. Mapping the fine-scale organization and plasticity of the brain vasculature. Cell 180, 780–795.e25 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Zhao, S. et al. Cellular and molecular probing of intact human organs. Cell 180, 796–812.e19 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mai, H. et al. Scalable tissue labeling and clearing of intact human organs. Nat. Protoc. 17, 2188–2215 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. Pașca, S. P. et al. A nomenclature consensus for nervous system organoids and assembloids. Nature 609, 907–910 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wimmer, R. A. et al. Human blood vessel organoids as a model of diabetic vasculopathy. Nature 565, 505–510 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. He, S. et al. Mapping morphological malformation to genetic dysfunction in blood vessel organoids with 22q11.2 deletion syndrome. Preprint at bioRxiv https://doi.org/10.1101/2021.11.17.468969 (2021).

  35. Qi, Y. et al. FDISCO: advanced solvent-based clearing method for imaging whole organs. Sci. Adv. 5, eaau8355 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Roberts, B. et al. Systematic gene tagging using CRISPR–Cas9 in human stem cells to illuminate cell organization. MBoC 28, 2854–2874 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Szymborska, A. & Gerhardt, H. Hold me, but not too tight—endothelial cell–cell junctions in angiogenesis. Cold Spring Harb. Perspect. Biol. 10, a029223 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wong, G. C. L. et al. Roadmap on emerging concepts in the physical biology of bacterial biofilms: from surface sensing to community formation. Phys. Biol. 18, 051501 (2021).

    Article  CAS  Google Scholar 

  39. Flemming, H.-C. et al. Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 14, 563–575 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Hartmann, R. et al. Emergence of three-dimensional order and structure in growing biofilms. Nat. Phys. 15, 251–256 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Jeckel, H. et al. Simultaneous spatiotemporal transcriptomics and microscopy of Bacillus subtilis swarm development reveal cooperation across generations. Nat. Microbiol. 8, 2378–2391 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yordanov, S. et al. Single-objective high-resolution confocal light sheet fluorescence microscopy for standard biological sample geometries. Biomed. Opt. Express 12, 3372–3391 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Yan, J., Sharo, A. G., Stone, H. A., Wingreen, N. S. & Bassler, B. L. Vibrio cholerae biofilm growth program and architecture revealed by single-cell live imaging. Proc. Natl Acad. Sci. USA 113, E5337–E5343 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Qin, B. et al. Cell position fates and collective fountain flow in bacterial biofilms revealed by light-sheet microscopy. Science 369, 71–77 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dayton, H. et al. Cellular arrangement impacts metabolic activity and antibiotic tolerance in Pseudomonas aeruginosa biofilms. PLoS Biol. 22, e3002205 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Berg, S. et al. ilastik: interactive machine learning for (bio)image analysis. Nat. Methods 16, 1226–1232 (2019).

    Article  CAS  PubMed  Google Scholar 

  47. Song, A. H. et al. Analysis of 3D pathology samples using weakly supervised AI. Cell 187, 2502–2520.e17 (2024).

    Article  CAS  PubMed  Google Scholar 

  48. Bria, A. & Iannello, G. TeraStitcher—a tool for fast automatic 3D-stitching of teravoxel-sized microscopy images. BMC Bioinformatics 13, 316 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Hörl, D. et al. BigStitcher: reconstructing high-resolution image datasets of cleared and expanded samples. Nat. Methods 16, 870–874 (2019).

    Article  PubMed  Google Scholar 

  50. Kelly, T. M. & Mann, J. J. Validity of DSM-III-R diagnosis by psychological autopsy: a comparison with clinician ante-mortem diagnosis. Acta Psychiatr. Scand. 94, 337–343 (1996).

    Article  CAS  PubMed  Google Scholar 

  51. Rahme, L. G. et al. Common virulence factors for bacterial pathogenicity in plants and animals. Science 268, 1899–1902 (1995).

    Article  CAS  PubMed  Google Scholar 

  52. Birey, F. et al. Assembly of functionally integrated human forebrain spheroids. Nature 545, 54–59 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sloan, S. A., Andersen, J., Pașca, A. M., Birey, F. & Pașca, S. P. Generation and assembly of human brain region-specific three-dimensional cultures. Nat. Protoc. 13, 2062–2085 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wimmer, R. A., Leopoldi, A., Aichinger, M., Kerjaschki, D. & Penninger, J. M. Generation of blood vessel organoids from human pluripotent stem cells. Nat. Protoc. 14, 3082–3100 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to R. Etchenique for initial discussions related to laser projectors and A. Teich and S. Small for providing brain samples and associated information. We thank the families for donating the brain tissue used in this study. R.T. discloses support for the research described in this study from NIH (grant numbers DP2MH119423 and UH3TR002151), and Columbia University Arts and Sciences startup grant. K.W.L. discloses support from NIH (grant numbers UH3TR002151 and UH3NS115598). L.E.P.D. discloses support from NIH (grant number R01AI103369). M.B. discloses support from NIH (grant numbers AI164769, AG076949, MH133561 and AG080790). We thank the Columbia University Alzheimer’s Disease Research Center, funded by NIH (grant number P30AG066462) to S. Small (principal investigator).

Author information

Authors and Affiliations

Authors

Contributions

Y.C. and R.T. conceptualized and designed the pLSM framework. Y.C. implemented and characterized pLSM, with inputs from C.G. on optical simulation and CAD design, and from S.C. on initial prototyping. The imaging experiments were conducted as follows: Y.C., Y.-Y.T., S.C., E.D.d.l.C., C.G., M.S.D. and R.T. prepared mouse and stained human brain samples, and performed pLSM imaging. G.B.R., A.J.D., J.J.M. and M.B. collected and phenotype the neurotypical human brain tissue utilized in this study. C.X., S.C., R.T. and K.W.L. generated and imaged the brain and vessel organoids. S.C., H.D., L.E.P.D. and R.T. developed the live-imaging assay for pellicle biofilms and performed the live-imaging experiments. R.T. and Y.C. analysed all the data and wrote the paper, with input from all the authors. R.T. supervised the project.

Corresponding author

Correspondence to Raju Tomer.

Ethics declarations

Competing interests

Columbia University has filed a provisional patent application related to pLSM.

Peer review

Peer review information

Nature Biomedical Engineering thanks Ali Erturk, Anne Rios and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures, Tables, Notes and Video captions.

Reporting Summary

Supplementary Video 1

Complete brain-wide visualization of TH+ neurons mapped with pLSM.

Supplementary Video 2

Whole-brain segmentation of TH+ neurons in the same sample imaged with pLSM as well as the COLM system.

Supplementary Video 3

Whole-brain rendering of CLARITY-cleared Thy1-eYFP transgenic mouse brain imaged using pLSM.

Supplementary Video 4

Small-volume rendering of CLARITY-cleared Thy1-eYFP transgenic mouse brain imaged using pLSM.

Supplementary Video 5

Multi-channel pLSM imaging of vasculature in neurotypical post-mortem human brain sample.

Supplementary Video 6

High-resolution rendering of vasculature image volumes at different depths of an intact human brain sample.

Supplementary Video 7

High-resolution imaging of APP in Alzheimer’s disease and neurotypical cortical samples.

Supplementary Video 8

Volumetric rendering of the pLSM imaging of an ensemble of hiPS cell-derived brain organoids.

Supplementary Video 9

Volumetric rendering of hiPS cell-derived vessel organoids imaged with pLSM.

Supplementary Video 10

Live imaging of sparsely labelled (2.5%) bacterial biofilm pellicle at the air–liquid interface.

Supplementary Video 11

Live imaging of sparsely labelled (2.5%) bacterial biofilm pellicle at the air–liquid interface.

Supplementary Video 12

Live imaging of a highly motile sparsely labelled (2.5%) bacterial biofilm pellicle at the air–liquid interface.

Souce data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Chauhan, S., Gong, C. et al. Low-cost and scalable projected light-sheet microscopy for the high-resolution imaging of cleared tissue and living samples. Nat. Biomed. Eng (2024). https://doi.org/10.1038/s41551-024-01249-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41551-024-01249-9

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology