Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural, geometric and genetic factors predict interregional brain connectivity patterns probed by electrocorticography

Abstract

Electrocorticography (ECoG) data can be used to estimate brain-wide connectivity patterns. Yet, the invasiveness of ECoG, incomplete cortical coverage, and variability in electrode placement across individuals make the network analysis of ECoG data challenging. Here, we show that the architecture of whole-brain ECoG networks and the factors that shape it can be studied by analysing whole-brain, interregional and band-limited ECoG networks from a large cohort—in this case, of individuals with medication-resistant epilepsy. Using tools from network science, we characterized the basic organization of ECoG networks, including frequency-specific architecture, segregated modules and the dependence of connection weights on interregional Euclidean distance. We then used linear models to explain variabilities in the connection strengths between pairs of brain regions, and to highlight the joint role, in shaping the brain-wide organization of ECoG networks, of communication along white matter pathways, interregional Euclidean distance and correlated gene expression. Moreover, we extended these models to predict out-of-sample, single-subject data. Our predictive models may have future clinical utility; for example, by anticipating the effect of cortical resection on interregional communication.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Processing pipeline for group-level ECoG FC matrices.
Fig. 2: Relationship between group-level ECoG and BOLD FC.
Fig. 3: Relationship between group-level ECoG modules and canonical systems.
Fig. 4: Distance dependence of ECoG FC and community properties.
Fig. 5: Predicting AECoG with search information, Euclidean distance and gene expression correlations.
Fig. 6: Predicting single-subject AECoG.

Similar content being viewed by others

Data availability

The main data supporting the results of this study are available within the paper and its Supplementary Information files. All source data collected from the subjects are available on request via http://memory.psych.upenn.edu/RAM_Public_Data.

Code availability

All code is available from the authors upon reasonable request.

References

  1. Yeo, B. T. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).

    PubMed  Google Scholar 

  2. Mann, K., Gallen, C. L. & Clandinin, T. R. Whole-brain calcium imaging reveals an intrinsic functional network in Drosophila. Curr. Biol. 27, 2389–2396 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Avitan, L. et al. Spontaneous activity in the zebrafish tectum reorganizes over development and is influenced by visual experience. Curr. Biol. 27, 2407–2419 (2017).

    CAS  PubMed  Google Scholar 

  4. Bullmore, E. & Sporns, O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198 (2009).

    CAS  PubMed  Google Scholar 

  5. Bassett, D. S. & Sporns, O. Network neuroscience. Nat. Neurosci. 20, 353–364 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Stam, C. J. & Reijneveld, J. C. Graph theoretical analysis of complex networks in the brain. Nonlinear Biomed. Phys. 1, 3 (2007).

    PubMed  PubMed Central  Google Scholar 

  7. Shirer, W. R., Ryali, S., Rykhlevskaia, E., Menon, V. & Greicius, M. D. Decoding subject-driven cognitive states with whole-brain connectivity patterns. Cereb. Cortex 22, 158–165 (2012).

    CAS  PubMed  Google Scholar 

  8. Cole, M. W., Bassett, D. S., Power, J. D., Braver, T. S. & Petersen, S. E. Intrinsic and task-evoked network architectures of the human brain. Neuron 83, 238–251 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Fornito, A., Zalesky, A. & Breakspear, M. The connectomics of brain disorders. Nat. Rev. Neurosci. 16, 159–172 (2015).

    CAS  PubMed  Google Scholar 

  10. Zuo, X.-N. et al. Human connectomics across the life span. Trends Cogn. Sci. 21, 32–45 (2017).

    PubMed  Google Scholar 

  11. Finn, E. S. et al. Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity. Nat. Neurosci. 18, 1664–1671 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Gordon, E. M. et al. Individual-specific features of brain systems identified with resting state functional correlations. NeuroImage 146, 918–939 (2017).

    PubMed  Google Scholar 

  13. Voytek, B. et al. Oscillatory dynamics coordinating human frontal networks in support of goal maintenance. Nat. Neurosci. 18, 1318–1324 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Jacobs, J. et al. Direct electrical stimulation of the human entorhinal region and hippocampus impairs memory. Neuron 92, 983–990 (2016).

    CAS  PubMed  Google Scholar 

  15. Branco, M. P. et al. Decoding hand gestures from primary somatosensory cortex using high-density ECoG. NeuroImage 147, 130–142 (2017).

    PubMed  Google Scholar 

  16. Ortega, G. J., Sola, R. G. & Pastor, J. Complex network analysis of human ECoG data. Neurosci. Lett. 447, 129–133 (2008).

    CAS  PubMed  Google Scholar 

  17. Kramer, M. A. et al. Coalescence and fragmentation of cortical networks during focal seizures. J. Neurosci. 30, 10076–10085 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Chu, C. J. et al. Emergence of stable functional networks in long-term human electroencephalography. J. Neurosci. 32, 2703–2713 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Wilke, C., Worrell, G. & He, B. Graph analysis of epileptogenic networks in human partial epilepsy. Epilepsia 52, 84–93 (2011).

    PubMed  Google Scholar 

  20. Burns, S. P. et al. Network dynamics of the brain and influence of the epileptic seizure onset zone. Proc. Natl Acad. Sci. USA 111, E5321–E5330 (2014).

    CAS  PubMed  Google Scholar 

  21. Keller, C. J. et al. Corticocortical evoked potentials reveal projectors and integrators in human brain networks. J. Neurosci. 34, 9152–9163 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Khambhati, A. N., Davis, K. A., Lucas, T. H., Litt, B. & Bassett, D. S. Virtual cortical resection reveals push–pull network control preceding seizure evolution. Neuron 91, 1170–1182 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Proix, T., Bartolomei, F., Guye, M. & Jirsa, V. K. Individual brain structure and modelling predict seizure propagation. Brain 140, 641–654 (2017).

    PubMed  PubMed Central  Google Scholar 

  24. Dringenberg, H. C. & Vanderwolf, C. H. Involvement of direct and indirect pathways in electrocorticographic activation. Neurosci. Biobehav. Rev. 22, 243–257 (1998).

    CAS  PubMed  Google Scholar 

  25. Goñi, J. Resting-brain functional connectivity predicted by analytic measures of network communication. Proc. Natl Acad. Sci. USA 111, 833–838 (2014).

    PubMed  Google Scholar 

  26. Richiardi, J. et al. Correlated gene expression supports synchronous activity in brain networks. Science 348, 1241–1244 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Cammoun, L. et al. Mapping the human connectome at multiple scales with diffusion spectrum MRI. J. Neurosci. Methods 203, 386–397 (2012).

    PubMed  Google Scholar 

  28. Sporns, O. & Betzel, R. F. Modular brain networks. Annu. Rev. Psychol. 67, 613–640 (2016).

    PubMed  Google Scholar 

  29. Power, J. D. et al. Functional network organization of the human brain. Neuron 72, 665–678 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Newman, M. E. J. & Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004).

    CAS  Google Scholar 

  31. Kopell, N., Ermentrout, G. B., Whittington, M. A. & Traub, R. D. Gamma rhythms and beta rhythms have different synchronization properties. Proc. Natl Acad. Sci. USA 97, 1867–1872 (2000).

    CAS  PubMed  Google Scholar 

  32. Menon, V. et al. Spatio-temporal correlations in human gamma band electrocorticograms. Electroencephalogr. Clin. Neurophysiol. 98, 89–102 (1996).

    CAS  PubMed  Google Scholar 

  33. Bullmore, Ed & Sporns, O. The economy of brain network organization. Nat. Rev. Neurosci. 13, 336–349 (2012).

    CAS  PubMed  Google Scholar 

  34. Ramsay, J. O. & Silverman, B. W. Applied Functional Data Analysis: Methods and Case Studies (Springer, 2002).

  35. Fries, P. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn. Sci. 9, 474–480 (2005).

    PubMed  Google Scholar 

  36. Muller, L. et al. Spatial resolution dependence on spectral frequency in human speech cortex electrocorticography. J. Neural Eng. 13, 056013 (2016).

    PubMed  PubMed Central  Google Scholar 

  37. Swann, N. et al. Intracranial EEG reveals a time- and frequency-specific role for the right inferior frontal gyrus and primary motor cortex in stopping initiated responses. J. Neurosci. 29, 12675–12685 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Watrous, A. J., Tandon, N., Conner, C. R, Pieters, T. & Ekstrom, A. D. Frequency-specific network connectivity increases underlie accurate spatiotemporal memory retrieval. Nat. Neurosci. 16, 349–356 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Honey, C. J. et al. Predicting human resting-state functional connectivity from structural connectivity. Proc. Natl Acad. Sci. USA 106, 2035–2040 (2009).

    CAS  PubMed  Google Scholar 

  40. Adachi, Y. et al. Functional connectivity between anatomically unconnected areas is shaped by collective network-level effects in the macaque cortex. Cereb. Cortex 22, 1586–1592 (2011).

    PubMed  Google Scholar 

  41. Betzel, R. F. et al. Generative models of the human connectome. NeuroImage 124, 1054–1064 (2016).

    PubMed  PubMed Central  Google Scholar 

  42. Bernard, D. et al. A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression. EMBO J. 29, 3082–3093 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Chiang, M.-C. et al. Genetics of brain fiber architecture and intellectual performance. J. Neurosci. 29, 2212–2224 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Kochunov, P. et al. Genetic analysis of cortical thickness and fractional anisotropy of water diffusion in the brain. Front. Neurosci. 5, 120 (2011).

    PubMed  PubMed Central  Google Scholar 

  45. Salmela, E. et al. Evidence for genetic regulation of the human parieto-occipital 10-Hz rhythmic activity. Eur. J. Neurosci. 44, 1963–1971 (2016).

    PubMed  PubMed Central  Google Scholar 

  46. Rosvall, M., Grönlund, A., Minnhagen, P. & Sneppen, K. Searchability of networks. Phys. Rev. E 72, 046117 (2005).

    CAS  Google Scholar 

  47. Arnatkeviciute, A., Fulcher, B. D. & Fornito, A. A practical guide to linking brain-wide gene expression and neuroimaging data. NeuroImage 189, 353–367 (2019).

    Google Scholar 

  48. Krienen, F. M., Yeo, B. T., Ge, T., Buckner, R. L. & Sherwood, C. C. Transcriptional profiles of supragranular-enriched genes associate with corticocortical network architecture in the human brain. Proc. Natl Acad. Sci. USA 113, E469–E478 (2016).

    CAS  PubMed  Google Scholar 

  49. Akaike H. in Selected Papers of Hirotugu Akaike (eds Parzen, E. et al.) 199–213 (Springer, 1998).

  50. Ezzyat, Y. et al. Direct brain stimulation modulates encoding states and memory performance in humans. Curr. Biol. 27, 1251–1258 (2017).

    CAS  PubMed  Google Scholar 

  51. Eden, E., Lipson, D., Yogev, S. & Yakhini, Z. Discovering motifs in ranked lists of DNA sequences. PLoS Comput. Biol. 3, e39 (2007).

    PubMed  PubMed Central  Google Scholar 

  52. Eden, E., Navon, R., Steinfeld, I., Lipson, D. & Yakhini, Z. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics 10, 48 (2009).

    PubMed  PubMed Central  Google Scholar 

  53. Khambhati, A. N. et al. Recurring functional interactions predict network architecture of interictal and ictal states in neocortical epilepsy. eNeuro 4, 1–18 (2017).

    Google Scholar 

  54. Chapeton, J. I., Inati, S. K. & Zaghloul, K. A. Stable functional networks exhibit consistent timing in the human brain. Brain 140, 628–640 (2017).

    PubMed  PubMed Central  Google Scholar 

  55. Solomon, E. et al. Widespread theta synchrony and high-frequency desynchronization underlies enhanced cognition. Nat. Commun. 8, 1704 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L. & Petersen, S. E. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage 59, 2142–2154 (2012).

    PubMed  Google Scholar 

  57. Clune, J., Mouret, J.-B. & Lipson, H. The evolutionary origins of modularity. Proc. R. Soc. B 280, 20122863 (2013).

    PubMed  Google Scholar 

  58. Mantini, D., Perrucci, M. G., Del Gratta, C. D., Romani, G. L. & Corbetta, M. Electrophysiological signatures of resting state networks in the human brain. Proc. Natl Acad. Sci. USA 104, 13170–13175 (2007).

    CAS  PubMed  Google Scholar 

  59. Marzetti, L. et al. Frequency specific interactions of MEG resting state activity within and across brain networks as revealed by the multivariate interaction measure. NeuroImage 79, 172–183 (2013).

    CAS  PubMed  Google Scholar 

  60. Battiston, F., Nicosia, V., Chavez, M. & Latora, V. Multilayer motif analysis of brain networks. Chaos 27, 047404 (2017).

    PubMed  Google Scholar 

  61. Kucyi, A. et al. Intracranial electrophysiology reveals reproducible intrinsic functional connectivity within human brain networks. J. Neurosci. 38, 4230–4242 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Conner, C. R., Ellmore, T. M., Pieters, T. A., DiSano, M. A. & Tandon, N. Variability of the relationship between electrophysiology and BOLD-fMRI across cortical regions in humans. J. Neurosci. 31, 12855–12865 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Goense, J. B. M. & Logothetis, N. K. Neurophysiology of the BOLD fMRI signal in awake monkeys. Curr. Biol. 18, 631–640 (2008).

    CAS  PubMed  Google Scholar 

  64. Winawer, J. et al. Asynchronous broadband signals are the principal source of the BOLD response in human visual cortex. Curr. Biol. 23, 1145–1153 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Miller, K. J., Honey, C. J., Hermes, D., Rao, R. P. N. & Ojemann, J. G. Broadband changes in the cortical surface potential track activation of functionally diverse neuronal populations. NeuroImage 85, 711–720 (2014).

    PubMed  Google Scholar 

  66. Hinne, M. et al. The missing link: predicting connectomes from noisy and partially observed tract tracing data. PLoS Comput. Biol. 13, e1005374 (2017).

    PubMed  PubMed Central  Google Scholar 

  67. Lo, R. Y., Jagust, W. J. & Alzheimer’s Disease Neuroimaging Initiative. Predicting missing biomarker data in a longitudinal study of Alzheimer disease. Neurology 78, 1376–1382 (2012).

  68. Henle, C. et al. First long term in vivo study on subdurally implanted micro-ECoG electrodes, manufactured with a novel laser technology. Biomed. Micro. 13, 59–68 (2011).

    CAS  Google Scholar 

  69. Lu, L., Pan, L., Zhou, T., Zhang, Y. C. & Stanley, H. E. Toward link predictability of complex networks. Proc. Natl Acad. Sci. USA 112, 2325–2330 (2015).

    CAS  PubMed  Google Scholar 

  70. Pan, L., Zhou, T., Lu, L. & Hu, C. K. Predicting missing links and identifying spurious links via likelihood analysis. Sci. Rep. 6, 22955 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Margulies, D. S. et al. Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc. Natl Acad. Sci. USA 113, 12574–12579 (2016).

    CAS  PubMed  Google Scholar 

  72. Honey, C. J., Kötter, R., Breakspear, M. & Sporns, O. Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc. Natl Acad. Sci. USA 104, 10240–10245 (2007).

    CAS  PubMed  Google Scholar 

  73. Hermundstad, A. M. et al. Structural foundations of resting-state and task-based functional connectivity in the human brain. Proc. Natl Acad. Sci. USA 110, 6169–6174 (2013).

    PubMed  Google Scholar 

  74. Betzel, R. F. et al. Multi-scale community organization of the human structural connectome and its relationship with resting-state functional connectivity. Netw. Sci. 1, 353–373 (2013).

    Google Scholar 

  75. Rubinov, M., Ypma, R. J., Watson, C. & Bullmore, E. T. Wiring cost and topological participation of the mouse brain connectome. Proc. Natl Acad. Sci. USA 112, 10032–10037 (2015).

    CAS  PubMed  Google Scholar 

  76. Gaiteri, C., Ding, Y., French, B., Tseng, G. C. & Sibille, E. Beyond modules and hubs: the potential of gene coexpression networks for investigating molecular mechanisms of complex brain disorders. Genes Brain Behav. 13, 13–24 (2014).

    CAS  PubMed  Google Scholar 

  77. Pezawas, L. et al. 5-HTTLPR polymorphism impacts human cingulate–amygdala interactions: a genetic susceptibility mechanism for depression. Nat. Neurosci. 8, 828–834 (2005).

    CAS  PubMed  Google Scholar 

  78. Meyer-Lindenberg, A. et al. Neural mechanisms of genetic risk for impulsivity and violence in humans. Proc. Natl Acad. Sci. USA 103, 6269–6274 (2006).

    CAS  PubMed  Google Scholar 

  79. Goulas A., et al. Cytoarchitectonic similarity is a wiring principle of the human connectome. Preprint at https://www.biorxiv.org/content/10.1101/068254v1 (2016).

  80. Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex. Nature 536, 171–178 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Baaré, W. F. C. et al. Quantitative genetic modeling of variation in human brain morphology. Cereb. Cortex 11, 816–824 (2001).

    PubMed  Google Scholar 

  82. Whitaker, K. J. et al. Adolescence is associated with genomically patterned consolidation of the hubs of the human brain connectome. Proc. Natl Acad. Sci. USA 113, 9105–9110 (2016).

    CAS  PubMed  Google Scholar 

  83. Hawrylycz, M. J. et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489, 391–399 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Chu, C. J. et al. EEG functional connectivity is partially predicted by underlying white matter connectivity. NeuroImage 108, 23–33 (2015).

    CAS  PubMed  Google Scholar 

  85. Birn, R. M., Diamond, J. B., Smith, M. A. & Bandettini, P. A. Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI. NeuroImage 31, 1536–1548 (2006).

    PubMed  Google Scholar 

  86. Liu, T. T. Neurovascular factors in resting-state functional MRI. NeuroImage 80, 339–348 (2013).

    PubMed  PubMed Central  Google Scholar 

  87. Hagmann, P. et al. Mapping the structural core of human cerebral cortex. PLoS Biol. 6, e159 (2008).

    PubMed  PubMed Central  Google Scholar 

  88. Deco, G., Jirsa, V. K. & McIntosh, A. R. Emerging concepts for the dynamical organization of resting-state activity in the brain. Nat. Rev. Neurosci. 12, 43–56 (2011).

    CAS  PubMed  Google Scholar 

  89. Jones, A. R., Overly, C. C. & Sunkin, S. M. The Allen Brain Atlas: 5 years and beyond. Nat. Rev. Neurosci. 10, 821–828 (2009).

    CAS  PubMed  Google Scholar 

  90. Sunkin, S. M. et al. Allen Brain Atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic acids Res. 41, D996–D1008 (2013).

    CAS  PubMed  Google Scholar 

  91. Thomas, C. et al. Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited. Proc. Natl Acad. Sci. USA 111, 16574–16579 (2014).

    CAS  PubMed  Google Scholar 

  92. Reveley, C. et al. Superficial white matter fiber systems impede detection of long-range cortical connections in diffusion MR tractography. Proc. Natl Acad. Sci. USA 112, E2820–E2828 (2015).

    CAS  PubMed  Google Scholar 

  93. Bassett, D. S. et al. Dynamic reconfiguration of human brain networks during learning. Proc. Natl Acad. Sci. USA 108, 7641–7646 (2011).

    CAS  PubMed  Google Scholar 

  94. Zhou, D., Thompson, W. K. & Siegle, G. MATLAB toolbox for functional connectivity. NeuroImage 47, 1590–1607 (2009).

    PubMed  PubMed Central  Google Scholar 

  95. Kitzbichler, M. G., Smith, M. L., Christensen, S. R. & Bullmore, E. Broadband criticality of human brain network synchronization. PLoS Comput. Biol. 5, e1000314 (2009).

    PubMed  PubMed Central  Google Scholar 

  96. Betzel, R. F. et al. Synchronization dynamics and evidence for a repertoire of network states in resting EEG. Front. Comput. Neurosci. 6, 74 (2012).

    PubMed  PubMed Central  Google Scholar 

  97. Smith, S. M. et al. Network modelling methods for fMRI. NeuroImage 54, 875–891 (2011).

    PubMed  Google Scholar 

  98. Park, H.-J. & Friston, K. Structural and functional brain networks: from connections to cognition. Science 342, 1238411 (2013).

    PubMed  Google Scholar 

  99. He, B. J., Snyder, A. Z., Zempel, J. M., Smyth, M. D. & Raichle, M. E. Electrophysiological correlates of the brain’s intrinsic large-scale functional architecture. Proc. Natl Acad. Sci. USA 105, 16039–16044 (2008).

    CAS  PubMed  Google Scholar 

  100. Kramer, M. A., Eden, U. T., Cash, S. S. & Kolaczyk, E. D. Network inference with confidence from multivariate time series. Phys. Rev. E 79, 061916 (2009).

    Google Scholar 

  101. Owen, L. L. W. & Manning, J. R. Towards human super EEG. Preprint at https://www.biorxiv.org/content/10.1101/121020v1 (2017).

  102. Rosset, A., Spadola, L. & Ratib, O. OsiriX: an open-source software for navigating in multidimensional DICOM images. J. Digit. Imaging 17, 205–216 (2004).

    PubMed  PubMed Central  Google Scholar 

  103. Betzel, R. F., Gu, S., Medaglia, J. D., Pasqualetti, F. & Bassett, D. S. Optimally controlling the human connectome: the role of network topology. Sci. Rep. 6, 30770 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Betzel, R. F. et al. The modular organization of human anatomical brain networks: accounting for the cost of wiring. Netw. Neurosci. 1, 42–68 (2017).

    PubMed  PubMed Central  Google Scholar 

  105. Betzel, R. F., Medaglia, J. D. & Bassett, D. S. Diversity of meso-scale architecture in human and non-human connectomes. Nat. Commun. 9, 346 (2018).

    PubMed  PubMed Central  Google Scholar 

  106. Mišić, B. et al. Cooperative and competitive spreading dynamics on the human connectome. Neuron 86, 1518–1529 (2015).

    PubMed  Google Scholar 

  107. Roberts, J. A., Perry, A., Roberts, G., Mitchell, P. B. & Breakspear, M. Consistency-based thresholding of the human connectome. NeuroImage 145, 118–129 (2017).

    PubMed  Google Scholar 

  108. Jones, D. K., Knösche, T. R. & Turner, R. White matter integrity, fiber count, and other fallacies: the do’s and don’ts of diffusion MRI. NeuroImage 73, 239–254 (2013).

    PubMed  Google Scholar 

  109. Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W. & Smith, S. M. FSL. NeuroImage 62, 782–790 (2012).

    PubMed  Google Scholar 

  110. Greve, D. N. & Fischl, B. Accurate and robust brain image alignment using boundary-based registration. NeuroImage 48, 63–72 (2009).

    PubMed  PubMed Central  Google Scholar 

  111. Zhang, Y., Brady, M. & Smith, S. Segmentation of brain MR images through a hidden Markov random field model and the expectation–maximization algorithm. IEEE Trans. Med. Imaging 20, 45–57 (2001).

    CAS  PubMed  Google Scholar 

  112. Jenkinson, M., Bannister, P., Brady, M. & Smith, S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage 17, 825–841 (2002).

    PubMed  Google Scholar 

  113. Murphy, K., Birn, R. M., Handwerker, D. A., Jones, T. B. & Bandettini, P. A. The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? NeuroImage 44, 893–905 (2009).

    PubMed  Google Scholar 

  114. Power, J. D., Plitt, M., Laumann, T. O. & Martin, A. Sources and implications of whole-brain fMRI signals in humans. NeuroImage 146, 609–625 (2017).

    PubMed  Google Scholar 

  115. Simpson, S. L., Moussa, M. N. & Laurienti, P. J. An exponential random graph modeling approach to creating group-based representative whole-brain connectivity networks. NeuroImage 60, 1117–1126 (2012).

    PubMed  PubMed Central  Google Scholar 

  116. Bazzi, M. et al. Community detection in temporal multilayer networks, with an application to correlation networks. Multiscale Model. Simul. 14, 1–41 (2016).

    Google Scholar 

  117. Betzel, R. F. & Bassett, D. S. Multi-scale brain networks. NeuroImage 160, 73–83 (2017).

    PubMed  Google Scholar 

  118. Iturria-Medina, Y., Sotero, R. C., Canales-Rodrí, E. J., Alemán-Gómez, Y. & Melie-García, L. Studying the human brain anatomical network via diffusion-weighted MRI and graph theory. NeuroImage 40, 1064–1076 (2008).

    PubMed  Google Scholar 

  119. Wirsich, J. et al. Whole-brain analytic measures of network communication reveal increased structure–function correlation in right temporal lobe epilepsy. NeuroImage Clin. 11, 707–718 (2016).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The resting-state fMRI and diffusion imaging data collection was funded by the Army Research Office through contract number W911NF-14-1-0679 awarded to D.S.B. R.F.B. and J.S. were supported by grants awarded to D.S.B., including awards from the John D. and Catherine T. MacArthur Foundation, Alfred P. Sloan Foundation, ISI Foundation, Paul G. Allen Family Foundation, Army Research Laboratory (W911NF-10-2-0022), Army Research Office (Bassett-W911NF-14-1-0679, Grafton-W911NF-16-1-0474 and DCIST-W911NF-17-2-0181), Office of Naval Research, National Institute of Mental Health (2-R01-DC-009209-11, R01-MH112847, R01-MH107235 and R21-M MH-106799), National Institute of Child Health and Human Development (1R01HD086888-01), National Institute of Neurological Disorders and Stroke (R01 NS099348) and National Science Foundation (BCS-1441502, BCS-1430087, NSF PHY-1554488 and BCS-1631550). A.E.K. was supported by a grant awarded to D.S.B. from the Army Research Laboratory through contract number W911NF-10-2-0022. J.D.M. acknowledges support from the National Institute of Health (award 1-DP5-OD021352). This content is solely the responsibility of the authors and does not necessarily represent the official views of any of the funding agencies. We also thank M. Kahana and the group associated with the DARPA Restoring Active Memory programme, who were responsible for collecting and publicly sharing the ECoG data used in this paper.

Author information

Authors and Affiliations

Authors

Contributions

R.F.B. and D.S.B. designed the study, performed all analyses and wrote the initial draft of the manuscript. J.D.M., A.E.K. and J.S. contributed to and processed the MRI data. D.R.S. helped with the Gene Ontology analysis. All authors wrote the final draft of the manuscript.

Corresponding author

Correspondence to Danielle S. Bassett.

Ethics declarations

Competing interests

The authors declare no competing Interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, discussion, figures, tables and references.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Betzel, R.F., Medaglia, J.D., Kahn, A.E. et al. Structural, geometric and genetic factors predict interregional brain connectivity patterns probed by electrocorticography. Nat Biomed Eng 3, 902–916 (2019). https://doi.org/10.1038/s41551-019-0404-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-019-0404-5

This article is cited by

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics