Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Scenarios of future annual carbon footprints of astronomical research infrastructures

Abstract

Research infrastructures have been identified as an important source of greenhouse gas emissions of astronomical research. Based on a comprehensive inventory of 1,211 ground-based observatories and space missions, we assessed the evolution of the number of astronomical facilities and their carbon footprint from 1945 to 2022. We found that space missions dominate greenhouse gas emissions in astronomy, showing an important peak at the end of the 1960s, followed by a decrease that has turned again into a rise over the last decade. Extrapolating past trends, we predict that greenhouse gas emissions from astronomical facilities will experience no strong decline in the future, and may even rise substantially, unless research practices are changed. We demonstrate that a continuing growth in the number of operating astronomical facilities is not environmentally sustainable. These findings should motivate the astronomical community to reflect about the necessary evolutions that would put astronomical research on a sustainable path.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Evolution of the number of astronomical facilities and their carbon footprints since 1945.
Fig. 2: Modelling of the future annual carbon footprints of astronomical facilities.
Fig. 3: Future annual carbon footprints for five illustrative scenarios.

Similar content being viewed by others

Data availability

All data used for this work are available via Zenodo at https://zenodo.org/records/12568160 (ref. 44).

Code availability

All code used for this work is available via Zenodo at https://zenodo.org/records/12568160 (ref. 44).

References

  1. Rosen, J. A greener culture. Nature 546, 565–567 (2017).

    Article  Google Scholar 

  2. Askenazy, P. et al. Intégrer les enjeux environnementaux à la conduite de la recherche–une responsabilité éthique. PhD thesis, Comité d’éthique du CNRS (2022).

  3. Stevens, A. R. H., Bellstedt, S., Elahi, P. J. & Murphy, M. T. The imperative to reduce carbon emissions in astronomy. Nat. Astron. 4, 843–851 (2020).

    Article  ADS  Google Scholar 

  4. Burtscher, L. et al. The carbon footprint of large astronomy meetings. Nat. Astron. 4, 823–825 (2020).

    Article  ADS  Google Scholar 

  5. Jahnke, K. et al. An astronomical institute’s perspective on meeting the challenges of the climate crisis. Nat. Astron. 4, 812–815 (2020).

    Article  ADS  Google Scholar 

  6. Van der Tak, F. et al. The carbon footprint of astronomy research in the Netherlands. Nat. Astron. 5, 1195–1198 (2021).

    Article  ADS  Google Scholar 

  7. Martin, P. et al. A comprehensive assessment of the carbon footprint of an astronomical institute. Nat. Astron. 6, 1219–1222 (2022).

    Article  ADS  Google Scholar 

  8. McCann, K. L., Nance, C., Sebastian, G. & Walawender, J. A path to net-zero carbon emissions at the W. M. Keck Observatory. Nat. Astron. 6, 1223–1227 (2022).

    Article  ADS  Google Scholar 

  9. Kruithof, G. et al. The energy consumption and carbon footprint of the LOFAR telescope. Exp. Astron. 56, 687–714 (2023).

    Article  ADS  Google Scholar 

  10. Viole, I., Valenzuela-Venegas, G., Zeyringer, M. & Sartori, S. A renewable power system for an off-grid sustainable telescope fueled by solar power, batteries and green hydrogen. Energy 282, 128570 (2023).

    Article  Google Scholar 

  11. Knödlseder, J. et al. Estimate of the carbon footprint of astronomical research infrastructures. Nat. Astron. 6, 503–513 (2022).

    Article  ADS  Google Scholar 

  12. Riahi, K. et al. in Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds P.R. Shukla et al.) (Cambridge Univ. Press, 2022).

  13. Friedlingstein, P. et al. Global carbon budget 2022. Earth Syst. Sci. Data 14, 4811–4900 (2022).

    Article  ADS  Google Scholar 

  14. Direct Air Capture 2022 (IEA, 2022); www.iea.org/reports/direct-air-capture-2022

  15. Ho, D. T. Carbon dioxide removal is not a current climate solution–we need to change the narrative. Nature 616, 9 (2023).

    Article  ADS  Google Scholar 

  16. Editorial. EU climate policy is dangerously reliant on untested carbon-capture technology. Nature 626, 456 (2024).

    Article  Google Scholar 

  17. Dziejarski, B., Krzyżyńska, R. & Andersson, K. Current status of carbon capture, utilization, and storage technologies in the global economy: A survey of technical assessment. Fuel 342, 127776 (2023).

    Article  Google Scholar 

  18. Jackson, R. B. et al. Global fossil carbon emissions rebound near pre-COVID-19 levels. Environ. Res. Lett. 17, 031001 (2022).

    Article  ADS  Google Scholar 

  19. Jackson, T. & Victor, P. A. Unraveling the claims for (and against) green growth. Science 366, 950–951 (2019).

    Article  ADS  Google Scholar 

  20. Hickel, J. & Kallis, G. Is green growth possible? New Political Econ. 25, 469–486 (2020).

    Article  Google Scholar 

  21. Hannesson, R. Are we seeing dematerialization of world GDP? Biophys. Econ. Sust. 6, 4 (2021).

    Article  Google Scholar 

  22. Murphy, T. W. Limits to economic growth. Nat. Physics 18, 844–847 (2022).

    Article  ADS  Google Scholar 

  23. Vogel, J. & Hickel, J. Is green growth happening? An empirical analysis of achieved versus Paris-compliant CO2–GDP decoupling in high-income countries. Lancet Planet. Health 7, 759–769 (2023).

    Article  Google Scholar 

  24. Global Letter (Million Advocates for Sustainable Science, 2022); www.sustainablescienceadvocates.org/wp-content/uploads/2022/07/Million-Advocates-Global-Letter.pdf

  25. Flahaut, J., Van der Bogert, C. H. & Vincent-Bonnieu, S. Scientific perspectives on lunar exploration in Europe. NPJ Microgravity 9, 50 (2023).

    Article  ADS  Google Scholar 

  26. Schneider, J., Kervella, P. & Labeyrie, A. Astronomy from the Moon in the next decades: from exoplanets to cosmology in visible light and beyond, Philos. Trans. R. Soc. A 382, 20230071 (2024).

    Google Scholar 

  27. Knödlseder, J. in Climate Change for Astronomers: Causes, Consequences, and Communication (ed. Rector, T.) Chap. 18 (IOP Astronomy, 2024).

  28. Resolution on ESA Accelerating the Use of Space in Europe (ESA Council, 2022); https://europeanspaceflight.com/wp-content/uploads/2022/11/Resolution_1_CM22.pdf

  29. Plan climat-biodiversité et transition écologique de l’Enseignement supérieur et de la Recherche (Ministère de l’enseignement supérieur et de la recherche, 2022); https://services.dgesip.fr/fichiers/Plan_climat_MESR_4.pdf

  30. Chang, A., Anderson, C. & Aden, N. Pathways to Net-Zero: SBTi Technical Summary (Science Based Targets, 2021); https://sciencebasedtargets.org/resources/files/Pathway-to-Net-Zero.pdf

  31. Lukac, M. R. & Miller, R. J. List of Active Professional Observatories (United States Naval Observatory, 2000).

  32. Leverington, D. Observatories and Telescopes of Modern Times (Cambridge Univ. Press, 2017).

  33. Thompson, A. R., Moran, J. M. & Swenson Jr, G. W. Interferometry and Synthesis in Radio Astronomy (Springer, 2017).

  34. Baars, J. W. M. & Kärcher, H. J. Radio Telescope Reflectors (Springer, 2018).

  35. Orchiston, W., Robertson, P. & Woodruff, T. S. Golden Years of Australian Radio Astronomy (Springer, 2021).

  36. Kellermann, K. I., Bouton, E. N. & Brandt, S. S. Open Skies (Springer, 2021).

  37. Krebs, G. D. Gunter’s Space Page. https://space.skyrocket.de (2023).

  38. Wilson, A. R. Advanced Methods of Life Cycle Assessment for Space Systems. PhD thesis, Univ. of Strathclyde (2019).

  39. Wilson, A. R. & Vasile, M. Life cycle engineering of space systems: preliminary findings. Adv. Space Res. 72, 2917–2935 (2023).

    Article  ADS  Google Scholar 

  40. Dos Santos Illa, G., Boix, M., Knödlseder, J., Garnier, P. & Montastruc, L. Assessment of the environmental impacts of the Cherenkov Telescope Array mid-sized telescope. Nat. Astron. https://doi.org/10.1038/s41550-024-02326-4 (2024).

  41. Barret, D. et al. Life cycle assessment of the Athena X-ray Integral Field Unit. Exp. Astron. 57, 19 (2024).

    Article  ADS  MathSciNet  Google Scholar 

  42. Jascheck, C. The size of the astronomical community. Scientometrics 22, 265–282 (1991).

    Article  ADS  Google Scholar 

  43. Kaya, Y. & Keiichi, K. Environment, Energy, and Economy: Strategies for Sustainability (United Nations Univ. Press, 1997).

  44. Knödlseder, J. The projected carbon footprint of astronomical facilities calls for changes in research practices. Zenodo https://doi.org/10.5281/zenodo.12568159 (2024).

  45. Hunter, J. D. Matplotlib: a 2-D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

This research has made use of NASA’s Astrophysics Data System Bibliographic Services (ADS). We thank K. Lockhart for her help with using that service. We further thank D. Barret for useful discussions. This work has also benefited from discussions within the research group and cross-disciplinary collective Labos 1point5, and within the grassroots movement Astronomers for Planet Earth. We thank all members for their engagement and support. This work has made use of the Python 2D plotting library matplotlib45.

Author information

Authors and Affiliations

Authors

Contributions

J.K. developed the method, gathered and analysed the data and drafted the paper. P.G. helped with the collection of some data. All authors contributed to the definition of the analysis method, the elaboration of the discussion section and the review of the manuscript.

Corresponding author

Correspondence to Jürgen Knödlseder.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Alison Farmer, Joshua Kace and Andrew Wilson for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–14, Tables 1–3 and Discussion.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knödlseder, J., Coriat, M., Garnier, P. et al. Scenarios of future annual carbon footprints of astronomical research infrastructures. Nat Astron (2024). https://doi.org/10.1038/s41550-024-02346-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41550-024-02346-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing