Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

High-energy neutrinos from the vicinity of the supermassive black hole in NGC 1068

Abstract

We present a comprehensive multi-messenger study of NGC 1068, the prototype Seyfert II galaxy associated with high-energy neutrinos following a detection by the IceCube Neutrino Observatory. Various aspects of the source, including its nuclear activity, jet, outflow and starburst region, are analysed in detail using a multi-wavelength approach and relevant luminosities are derived. We then explore its γ-ray and neutrino emissions and investigate the potential mechanisms underlying these phenomena and their relations with the different astrophysical components to try to understand which is responsible for the IceCube neutrinos. By first using simple order-of-magnitude arguments and then applying specific theoretical models, we infer that only the region close to the accretion disk around the supermassive black hole has the right density of both the X-ray photons needed to provide the targets for protons to sustain neutrino production and the optical/infrared photons required to absorb the associated, but unobserved, γ-rays. We conclude by highlighting ongoing efforts to constrain a possible broad connection between neutrinos and active galactic nuclei, as well as future synergies between astronomical and neutrino facilities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Significance map around the location of NGC 1068.
Fig. 2: The integrated multi-messenger SED of NGC 1068.
Fig. 3: Aperture synthesis image of NGC 1068 at 1.7 GHz.
Fig. 4: Expected increase in significance of neutrino emission from NGC1068 over time.

Similar content being viewed by others

References

  1. Aartsen, M. G. et al. First observation of PeV-energy neutrinos with IceCube. Phys. Rev. Lett. 111, 021103 (2013).

    Article  ADS  Google Scholar 

  2. IceCube Collaboration. Evidence for high-energy extraterrestrial neutrinos at the IceCube Detector. Science 342, 1242856 (2013).

    Article  Google Scholar 

  3. Icecube Collaboration. Observation of high-energy neutrinos from the Galactic plane. Science 380, 1338–1343 (2023).

    Article  ADS  Google Scholar 

  4. IceCube Collaboration. Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A. Science 361, eaat1378 (2018).

    Article  ADS  Google Scholar 

  5. IceCube Collaboration. Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert. Science 361, 147–151 (2018).

    Article  ADS  Google Scholar 

  6. IceCube Collaboration. Evidence for neutrino emission from the nearby active galaxy NGC 1068. Science 378, 538–543 (2022).

    Article  ADS  Google Scholar 

  7. Fath, E. A. The spectra of some spiral nebulae and globular star clusters. Lick Obs. Bull. 149, 71–77 (1909).

    ADS  Google Scholar 

  8. Seyfert, C. K. Nuclear emission in spiral nebulae. Astrophys. J. 97, 28 (1943).

    Article  ADS  Google Scholar 

  9. Antonucci, R. R. J. & Miller, J. S. Spectropolarimetry and the nature of NGC 1068. Astrophys. J. 297, 621–632 (1985).

    Article  ADS  Google Scholar 

  10. Schmidt, M. 3C 273 : a star-like object with large red-shift. Nature 197, 1040 (1963).

    Article  ADS  Google Scholar 

  11. Padovani, P. et al. Active galactic nuclei: what’s in a name? Astron. Astrophys. Rev. 25, 2 (2017).

    Article  ADS  Google Scholar 

  12. Padovani, P. The microjansky and nanojansky radio sky: source population and multiwavelength properties. Mon. Not. R. Astron. Soc. 411, 1547–1561 (2011).

    Article  ADS  Google Scholar 

  13. Padovani, P. On the two main classes of active galactic nuclei. Nat. Astron. 1, 0194 (2017).

    Article  ADS  Google Scholar 

  14. Greenhill, L. J., Gwinn, C. R., Antonucci, R. & Barvainis, R. VLBI imaging of water maser emission from the nuclear torus of NGC 1068. Astrophys. J. Lett. 472, L21 (1996).

    Article  ADS  Google Scholar 

  15. Wang, J.-M., Songsheng, Y.-Y., Li, Y.-R., Du, P. & Yu, Z. Dynamical evidence from the sub-parsec counter-rotating disc for a close binary of supermassive black holes in NGC 1068. Mon. Not. R. Astron. Soc. 497, 1020–1028 (2020).

    Article  ADS  Google Scholar 

  16. Gallimore, J. F., Baum, S. A., O’Dea, C. P. & Pedlar, A. The subarcsecond radio structure in NGC 1068. I. Observations and results. Astrophys. J. 458, 136 (1996).

    Article  ADS  Google Scholar 

  17. García-Burillo, S. et al. Molecular line emission in NGC 1068 imaged with ALMA. I. An AGN-driven outflow in the dense molecular gas. Astron. Astrophys. 567, A125 (2014).

    Article  Google Scholar 

  18. Roy, A. L., Wilson, A. S., Ulvestad, J. S. & Colbert, J. M. Slow jets in Seyfert Galaxies: NGC1068. In Proc. 5th European VLBI Network Symposium (eds Conway, J. E. et al.) 7 (Onsala Space Observatory, 2000).

  19. Park, J. et al. Kinematics of the M87 jet in the collimation zone: gradual acceleration and velocity stratification. Astrophys. J. 887, 147 (2019).

    Article  ADS  Google Scholar 

  20. Fischer, T. C., Johnson, M. C., Secrest, N. J., Crenshaw, D. M. & Kraemer, S. B. No small-scale radio jets here: multiepoch observations of radio continuum structures in NGC 1068 with the VLBA. Astrophys. J. 953, 87 (2023).

    Article  ADS  Google Scholar 

  21. Condon, J. J. et al. The NRAO VLA Sky Survey. Astron. J. 115, 1693–1716 (1998).

    Article  ADS  Google Scholar 

  22. Ansoldi, S. et al. The blazar TXS 0506+056 associated with a high-energy neutrino: insights into extragalactic jets and cosmic-ray acceleration. Astrophys. J. Lett. 863, L10 (2018).

    Article  ADS  Google Scholar 

  23. Harrison, C. M. Impact of supermassive black hole growth on star formation. Nat. Astron. 1, 0165 (2017).

    Article  ADS  Google Scholar 

  24. Cicone, C. et al. The largely unconstrained multiphase nature of outflows in AGN host galaxies. Nat. Astron. 2, 176–178 (2018).

    Article  ADS  Google Scholar 

  25. Fabian, A. C. Observational evidence of active galactic nuclei feedback. Annu. Rev. Astron. Astrophys. 50, 455–489 (2012).

    Article  ADS  Google Scholar 

  26. Impellizzeri, C. M. V. et al. Counter-rotation and high-velocity outflow in the parsec-scale molecular torus of NGC 1068. Astrophys. J. Lett. 884, L28 (2019).

    Article  ADS  Google Scholar 

  27. Viti, S. et al. Molecular line emission in NGC 1068 imaged with ALMA. II. The chemistry of the dense molecular gas. Astron. Astrophys. 570, A28 (2014).

    Article  Google Scholar 

  28. Kelly, G. et al. Molecular shock tracers in NGC 1068: SiO and HNCO. Astron. Astrophys. 597, A11 (2017).

    Article  Google Scholar 

  29. Huang, K. Y. et al. The chemical footprint of AGN feedback in the outflowing circumnuclear disk of NGC 1068. Astron. Astrophys. 666, A102 (2022).

    Article  Google Scholar 

  30. Maiolino, R. et al. Evidence of strong quasar feedback in the early Universe. Mon. Not. R. Astron. Soc. 425, L66–L70 (2012).

    Article  ADS  Google Scholar 

  31. Lamastra, A. et al. Galactic outflow driven by the active nucleus and the origin of the gamma-ray emission in NGC 1068. Astron. Astrophys. 596, A68 (2016).

    Article  Google Scholar 

  32. Ramos Almeida, C. et al. The infrared nuclear emission of Seyfert galaxies on parsec scales: testing the clumpy torus models. Astrophys. J. 702, 1127–1149 (2009).

    Article  ADS  Google Scholar 

  33. Markowitz, A. G., Krumpe, M. & Nikutta, R. First X-ray-based statistical tests for clumpy-torus models: eclipse events from 230 years of monitoring of Seyfert AGN. Mon. Not. R. Astron. Soc. 439, 1403–1458 (2014).

    Article  ADS  Google Scholar 

  34. Marinucci, A. et al. NuSTAR catches the unveiling nucleus of NGC 1068. Mon. Not. R. Astron. Soc. 456, L94–L98 (2016).

    Article  ADS  Google Scholar 

  35. GRAVITY Collaboration. An image of the dust sublimation region in the nucleus of NGC 1068. Astron. Astrophys. 634, A1 (2020).

    Article  Google Scholar 

  36. Gámez Rosas, V. et al. Thermal imaging of dust hiding the black hole in NGC 1068. Nature 602, 403–407 (2022).

    Article  ADS  Google Scholar 

  37. Brandt, W. N. & Alexander, D. M. Cosmic X-ray surveys of distant active galaxies. The demographics, physics, and ecology of growing supermassive black holes. Astron. Astrophys. Rev. 23, 1 (2015).

    Article  ADS  Google Scholar 

  38. De Marco, B., Motta, S. E. & Belloni, T. M. in Handbook of X-ray and Gamma-ray Astrophysics (eds Bambi, C. & Santangelo, A.) 1–41 (Springer Nature Singapore, 2022).

  39. Liang, E. P. T. On the hard X-ray emission mechanism of active galactic nuclei sources. Astrophys. J. Lett. 231, L111–L114 (1979).

    Article  ADS  Google Scholar 

  40. Alston, W., Giustini, M. & Petrucci, P.-O. in Handbook of X-ray and Gamma-ray Astrophysics (eds Bambi, C. & Santangelo, A.) 1–51 (Springer Nature Singapore, 2022).

  41. Lasota, J.-P. AGN accretion discs. Preprint at https://arxiv.org/abs/2302.07925 (2023).

  42. Gianolli, V. E. et al. Uncovering the geometry of the hot X-ray corona in the Seyfert galaxy NGC 4151 with IXPE. Mon. Not. R. Astron. Soc. 523, 4468–4476 (2023).

    Article  ADS  Google Scholar 

  43. Tagliacozzo, D. et al. The geometry of the hot corona in MCG-05-23-16 constrained by X-ray polarimetry. Mon. Not. R. Astron. Soc. 525, 4735–4743 (2023).

    Article  ADS  Google Scholar 

  44. Ingram, A. et al. The X-ray polarization of the Seyfert 1 galaxy IC 4329A. Mon. Not. R. Astron. Soc. 525, 5437–5449 (2023).

    Article  ADS  Google Scholar 

  45. Zaino, A. et al. Probing the circumnuclear absorbing medium of the buried AGN in NGC 1068 through NuSTAR observations. Mon. Not. R. Astron. Soc. 492, 3872–3884 (2020).

    Article  ADS  Google Scholar 

  46. Duras, F. et al. Universal bolometric corrections for active galactic nuclei over seven luminosity decades. Astron. Astrophys. 636, A73 (2020).

    Article  Google Scholar 

  47. Spinoglio, L., Fernández-Ontiveros, J. A. & Malkan, M. A. The high-ionization IR fine structure lines as bolometric indicators of the AGN power: study of the complete 12 μm AGN Sample. Astrophys. J. 941, 46 (2022).

    Article  ADS  Google Scholar 

  48. Abdo, A. A. et al. Fermi Large Area Telescope first source catalog. Astrophys. J. Suppl. Ser. 188, 405–436 (2010).

    Article  ADS  Google Scholar 

  49. Lenain, J. P., Ricci, C., Türler, M., Dorner, D. & Walter, R. Seyfert 2 galaxies in the GeV band: jets and starburst. Astron. Astrophys. 524, A72 (2010).

    Article  Google Scholar 

  50. Abdollahi, S. et al. Fermi Large Area Telescope fourth source catalog. Astrophys. J. Suppl. Ser. 247, 33 (2020).

    Article  ADS  Google Scholar 

  51. Aharonian, F. et al. Observations of selected AGN with HESS. Astron. Astrophys. 441, 465–472 (2005).

    Article  ADS  Google Scholar 

  52. Acciari, V. A. et al. Constraints on gamma-ray and neutrino emission from NGC 1068 with the MAGIC Telescopes. Astrophys. J. 883, 135 (2019).

    Article  ADS  Google Scholar 

  53. Albert, A. et al. A survey of active galaxies at TeV photon energies with the HAWC Gamma-Ray Observatory. Astrophys. J. 907, 67 (2021).

    Article  ADS  Google Scholar 

  54. Ajello, M., Di Mauro, M., Paliya, V. S. & Garrappa, S. The γ-ray emission of star-forming galaxies. Astrophys. J. 894, 88 (2020).

    Article  ADS  Google Scholar 

  55. Peretti, E., Blasi, P., Aharonian, F. & Morlino, G. Cosmic ray transport and radiative processes in nuclei of starburst galaxies. Mon. Not. R. Astron. Soc. 487, 168–180 (2019).

    Article  ADS  Google Scholar 

  56. Ajello, M., Murase, K. & McDaniel, A. Disentangling the hadronic components in NGC 1068. Astrophys. J. Lett. 954, L49 (2023).

    Article  ADS  Google Scholar 

  57. Ajello, M. et al. Gamma rays from fast black-hole winds. Astrophys. J. 921, 144 (2021).

    Article  ADS  Google Scholar 

  58. Fiore, F. et al. AGN wind scaling relations and the co-evolution of black holes and galaxies. Astron. Astrophys. 601, A143 (2017).

    Article  Google Scholar 

  59. Tombesi, F. et al. Evidence for ultra-fast outflows in radio-quiet AGNs. I. Detection and statistical incidence of Fe K-shell absorption lines. Astron. Astrophys. 521, A57 (2010).

    Article  Google Scholar 

  60. McDaniel, A., Ajello, M. & Karwin, C. Gamma-ray emission from galaxies hosting molecular outflows. Astrophys. J. 943, 168 (2023).

    Article  ADS  Google Scholar 

  61. Paiano, S. et al. The spectra of IceCube Neutrino (SIN) candidate sources – III. Optical spectroscopy and source characterization of the full sample. Mon. Not. R. Astron. Soc. 521, 2270–2289 (2023).

    Article  ADS  Google Scholar 

  62. Abbasi, R. et al. IceCube high-energy starting event sample: description and flux characterization with 7.5 years of data. Phys. Rev. D 104, 022002 (2021).

    Article  ADS  Google Scholar 

  63. Ballet, J., Burnett, T. H., Digel, S. W. & Lott, B. Fermi Large Area Telescope fourth source catalog data release 2. Preprint at https://arxiv.org/abs/2005.11208 (2020).

  64. Abbasi, R. et al. first neutrino point-source results from the 22 string Icecube Detector. Astrophys. J. Lett. 701, L47–L51 (2009).

    Article  ADS  Google Scholar 

  65. Aartsen, M. G. et al. Time-integrated neutrino source searches with 10 years of IceCube data. Phys. Rev. Lett. 124, 051103 (2020).

    Article  ADS  Google Scholar 

  66. Berezinskii, V. S., Bulanov, S. V., Dogiel, V. A. & Ptuskin, V. S. Astrophysics of Cosmic Rays (ed. Ginzburg, V. L.) (Amsterdam: North-Holland, 1990).

  67. Gaisser, T. K., Engel, R. & Resconi, E. Cosmic Rays and Particle Physics (Cambridge Univ. Press, 2016).

  68. Mücke, A., Rachen, J. P., Engel, R., Protheroe, R. J. & Stanev, T. Photohadronic processes in astrophysical environments. Publ. Astron. Soc. Aust. 16, 160–166 (1999).

    Article  ADS  Google Scholar 

  69. Gould, R. J. & Schréder, G. P. Pair production in photon-photon collisions. Phys. Rev. 155, 1404–1407 (1967).

    Article  ADS  Google Scholar 

  70. Aharonian, F. A. Very High Energy Cosmic Gamma Radiation: A Crucial Window on the Extreme Universe (World Scientific, 2004).

  71. Inoue, Y., Khangulyan, D., Inoue, S. & Doi, A. On high-energy particles in accretion disk coronae of supermassive black holes: implications for MeV gamma-rays and high-energy neutrinos from AGN cores. Astrophys. J. 880, 40 (2019).

    Article  ADS  Google Scholar 

  72. Caputo, R. et al. All-sky medium energy gamma-ray observatory eXplorer mission concept. J. Astron. Telesc. Instrum. Syst. 8, 044003 (2022).

    Article  ADS  Google Scholar 

  73. de Angelis, A. et al. Science with e-ASTROGAM. A space mission for MeV-GeV gamma-ray astrophysics. J. High Energy Astrophys. 19, 1–106 (2018).

    ADS  Google Scholar 

  74. Gabici, S. & Aharonian, F. A. Gamma ray signatures of ultra high energy cosmic ray accelerators: electromagnetic cascade versus synchrotron radiation of secondary electrons. Astrophys. Space Sci. 309, 465–469 (2007).

    Article  ADS  Google Scholar 

  75. Murase, K. Hidden hearts of neutrino active galaxies. Astrophys. J. Lett. 941, L17 (2022).

    Article  ADS  Google Scholar 

  76. Berezinsky, V. S. in Proc. International Conference Neutrino ’77 (eds Faissner, H. et al.) 650 (Friedrich Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig, 1977).

  77. Eichler, D. High-energy neutrino astronomy: a probe of galactic nuclei? Astrophys. J. 232, 106–112 (1979).

    Article  ADS  Google Scholar 

  78. Silberberg, R. & Shapiro, M. M. Neutrinos as a probe for the nature of and processes in active galactic nuclei. In Proc. 16th International Cosmic Ray Conference Vol. 10 (ed. Miyake, S.) 357 (Institute for Cosmic Ray Research, 1979).

  79. Inoue, Y., Khangulyan, D. & Doi, A. On the origin of high-energy neutrinos from NGC 1068: the role of nonthermal coronal activity. Astrophys. J. Lett. 891, L33 (2020).

    Article  ADS  Google Scholar 

  80. Murase, K., Kimura, S. S. & Mészáros, P. Hidden cores of active galactic nuclei as the origin of medium-energy neutrinos: critical tests with the MeV gamma-ray connection. Phys. Rev. Lett. 125, 011101 (2020).

    Article  ADS  Google Scholar 

  81. Yoast-Hull, T. M., Gallagher I, J. S., Zweibel, E. G. & Everett, J. E. Active galactic nuclei, neutrinos, and interacting cosmic rays in NGC 253 and NGC 1068. Astrophys. J. 780, 137 (2014).

    Article  ADS  Google Scholar 

  82. Eichmann, B., Oikonomou, F., Salvatore, S., Dettmar, R.-J. & Tjus, J. B. Solving the multimessenger puzzle of the AGN-starburst composite galaxy NGC 1068. Astrophys. J. 939, 43 (2022).

    Article  ADS  Google Scholar 

  83. Peretti, E. et al. Diffusive shock acceleration at EeV and associated multimessenger flux from ultra-fast outflows driven by active galactic nuclei. Mon. Not. R. Astron. Soc. 526, 181–192 (2023).

    Article  ADS  Google Scholar 

  84. Inoue, S., Cerruti, M., Murase, K. & Liu, R.-Y. High-energy neutrinos and gamma rays from winds and tori in active galactic nuclei. Preprint at https://arxiv.org/abs/2207.02097 (2022).

  85. Salvatore, S., Eichmann, B., Rodrigues, X., Dettmar, R. J. & Becker Tjus, J. On the possible jet contribution to the γ-ray luminosity in NGC 1068. Astron. Astrophys. 687, A139 (2024).

    Article  Google Scholar 

  86. Fang, K., Lopez Rodriguez, E., Halzen, F. & Gallagher, J. S. High-energy neutrinos from the inner circumnuclear region of NGC 1068. Astrophys. J. 956, 8 (2023).

    Article  ADS  Google Scholar 

  87. Michiyama, T., Inoue, Y., Doi, A. & Dmitry, K. ALMA detection of parsec-scale blobs at the head of a kiloparsec-scale jet in the nearby Seyfert galaxy NGC 1068. Astrophys. J. Lett. 936, L1 (2022).

    Article  ADS  Google Scholar 

  88. Ghisellini, G., Haardt, F. & Fabian, A. C. On re-acceleration, pairs and the high-energy spectrum of AGN and galactic black hole candidates. Mon. Not. R. Astron. Soc. 263, L9–L12 (1993).

    Article  ADS  Google Scholar 

  89. Fabian, A. C. et al. Properties of AGN coronae in the NuSTAR era. Mon. Not. R. Astron. Soc. 451, 4375–4383 (2015).

    Article  ADS  Google Scholar 

  90. Fabian, A. C., Lohfink, A., Belmont, R., Malzac, J. & Coppi, P. Properties of AGN coronae in the NuSTAR era - II. Hybrid plasma. Mon. Not. R. Astron. Soc. 467, 2566–2570 (2017).

    Article  ADS  Google Scholar 

  91. Olivares, H. R., Mościbrodzka, M. A. & Porth, O. General relativistic hydrodynamic simulations of perturbed transonic accretion. Astron. Astrophys. 678, A141 (2023).

    Article  ADS  Google Scholar 

  92. Jiang, Y.-F., Blaes, O., Stone, J. M. & Davis, S. W. Global radiation magnetohydrodynamic simulations of sub-Eddington accretion disks around supermassive black holes. Astrophys. J. 885, 144 (2019).

    Article  ADS  Google Scholar 

  93. Fiorillo, D. F. G., Petropoulou, M., Comisso, L., Peretti, E. & Sironi, L. TeV neutrinos and hard X-rays from relativistic reconnection in the corona of NGC 1068. Astrophys. J. Lett. 961, L14 (2024).

    Article  ADS  Google Scholar 

  94. Mbarek, R., Philippov, A., Chernoglazov, A., Levinson, A. & Mushotzky, R. Interplay between accelerated protons, x-rays and neutrinos in the corona of NGC 1068: constraints from kinetic plasma simulations. Phys. Rev. D 109, L101306 (2024).

    Article  ADS  Google Scholar 

  95. Abbasi, R. et al. Extending the IceCube search for neutrino point sources in the northern sky with additional years of data. In Proc. 38th International Cosmic Ray Conference 1060 (Proceedings of Science, 2023).

  96. Kheirandish, A., Murase, K. & Kimura, S. S. High-energy neutrinos from magnetized coronae of active galactic nuclei and prospects for identification of Seyfert galaxies and quasars in neutrino telescopes. Astrophys. J. 922, 45 (2021).

    Article  ADS  Google Scholar 

  97. Ricci, C. et al. BAT AGN spectroscopic survey. V. X-ray properties of the Swift/BAT 70-month AGN catalog. Astrophys. J. Suppl. Ser. 233, 17 (2017).

    Article  ADS  Google Scholar 

  98. Abbasi, R. et al. Searching for high-energy neutrino emission from Seyfert galaxies in the northern sky with IceCube. In Proc. 38th International Cosmic Ray Conference 1052 (Proceedings of Science, 2023).

  99. Abbasi, R. et al. Search for TeV neutrinos from Seyfert galaxies in the southern sky using starting track events in IceCube. In Proc. 38th International Cosmic Ray Conference 1533 (Proceedings of Science, 2023).

  100. Abbasi, R. et al. Search for high-energy neutrino emission from hard X-ray AGN with IceCube. In Proc. 38th International Cosmic Ray Conference 1032 (Proceedings of Science, 2023).

  101. Tanimoto, A., Ueda, Y., Odaka, H., Yamada, S. & Ricci, C. NuSTAR Observations of 52 Compton-thick active galactic nuclei selected by the Swift/Burst Alert Telescope all-sky hard X-ray survey. Astrophys. J. Suppl. Ser. 260, 30 (2022).

    Article  ADS  Google Scholar 

  102. Neronov, A., Savchenko, D. & Semikoz, D. V. Neutrino signal from a population of Seyfert galaxies. Phys. Rev. Lett. 132, 101002 (2024).

    Article  ADS  Google Scholar 

  103. Padovani, P. et al. Dissecting the region around IceCube-170922A: the blazar TXS 0506+056 as the first cosmic neutrino source. Mon. Not. R. Astron. Soc. 480, 192–203 (2018).

    Article  ADS  Google Scholar 

  104. Murase, K., Guetta, D. & Ahlers, M. Hidden cosmic-ray accelerators as an origin of TeV-PeV cosmic neutrinos. Phys. Rev. Lett. 116, 071101 (2016).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The idea for this Review came during a Topical Workshop on NGC 1068 organized by E.R., C.B. and P.P. and held at the Munich Institute for Astro-, Particle and BioPhysics in Garching on 6–10 March 2023. As the organizers and invited speakers, we wish to thank all of the participants in the meeting for the stimulating atmosphere and fruitful discussions. This work is supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through grant number SFB 1258 ‘Neutrinos and Dark Matter in Astro- and Particle Physics’ and by the Excellence Cluster ORIGINS, which is funded by the DFG under Germany’s Excellence Strategy EXC 2094. B.E. acknowledges support from the DFG within the Collaborative Research Center grant number SFB 1491 ‘Cosmic Interacting Matters – From Source to Signal’. E.P. acknowledges support from the Villum Fonden (grant number 18994) and from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement number 847523 ’INTERACTIONS’. S.G. and E.P. were also supported by Agence Nationale de la Recherche (grant number ANR-21-CE31-0028).

Author information

Authors and Affiliations

Authors

Contributions

P.P. coordinated the work, contributing mostly to the ‘Main’, the ‘Multi-messenger view’, the ‘Relevant powers and the case for a ‘hidden’ source scenario’ and the ‘Conclusions’ sections and the Supplementary Information, and collaborated with E.R. on finalizing the paper. E.R. also contributed to the ‘Main’ and ‘Conclusions’ sections. K.-Y.H. worked on the ‘Sub-millimetre band and molecular outflow power’ section, while V.G.R. and T.S. focused on the ‘Near-IR band and the torus’ section, S.B. on the ‘X-ray band and AGN power’ section, M.A. and A.L. on the ‘Gamma-ray band and SB power’ section, C.B. on ‘Teraelectronvolt neutrino band’ and ‘Outlook’ sections, S.G. on the ‘Relevant powers and the case for a ‘hidden’ source scenario’ section, E.P., B.E., D.G. and A.L. on the ‘Nailing down the hidden source case’ section, P.B. on the ‘Nailing down the hidden source case’ section and the Supplementary Information, and H.N. on the ‘Outlook’ section. All authors participated in discussions regarding the manuscript.

Corresponding author

Correspondence to P. Padovani.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padovani, P., Resconi, E., Ajello, M. et al. High-energy neutrinos from the vicinity of the supermassive black hole in NGC 1068. Nat Astron 8, 1077–1087 (2024). https://doi.org/10.1038/s41550-024-02339-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-024-02339-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing