Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Macro and micro structures of pebble-made cometary nuclei reconciled by seasonal evolution

Abstract

Comets evolve due to sublimation of ices embedded inside porous dust, triggering dust emission (that is, erosion) followed by mass loss, mass redistribution and surface modifications. Surface changes were revealed by the Deep Impact and Stardust NExT missions for comet 9P/Tempel 1 (ref. 1), and a full inventory of the processes modifying cometary nuclei was provided by Rosetta while it escorted comet 67P/Churyumov–Gerasimenko for approximately two years2,3,4. Such observations also showed puzzling water-ice-rich spots that stood out as patches optically brighter and spectrally bluer than the average cometary surface5,6,7,8,9. These are up to tens of metres large and indicate macroscopic compositional dishomogeneities apparently in contrast with the structural homogeneity above centimetre scales of pebble-made nuclei10. Here we show that the occurrence of blue patches determines the seasonal variability of the nucleus colour4,11,12 and gives insight into the internal structure of comets. We define a new model that links the centimetre-sized pebbles composing the nucleus10 and driving cometary activity13,14 to metre-sized water-ice-enriched blocks embedded in a drier matrix. The emergence of blue patches is due to the matrix erosion driven by CO2-ice sublimation that exposes the water-ice-enriched blocks, which in turn are eroded by water-ice sublimation when exposed to sunlight. Our model explains the observed seasonal evolution of the nucleus and reconciles the available data at micro (sub-centimetre) and macro (metre) scales.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: VIS spectral-slope (SVIS) maps of comet 67P/Churyumov–Gerasimenko’s surface at different orbital phases.
Fig. 2: Spectral-slope (SVIS) temporal evolution from August 2014 to September 2016, for different areas on 67P’s surface.
Fig. 3: Temporal evolution of the BP areal fraction in the ROI 1.
Fig. 4: 67P/Churyumov–Gerasimenko surface blueing at perihelion is due to the progressive exposure to sunlight of subsurface WEBs.

Similar content being viewed by others

Data availability

The VIRTIS calibrated data are publicly available through the European Space Agency’s Planetary Science Archive website (https://archives.esac.esa.int/psa/). Source data are provided with this paper.

Code availability

The computer code used to produce VIS spectral-slope maps of 67P is a direct implementation of a published method11. The computer codes used to perform spectral modelling and simulations of the BP fraction temporal evolution are direct implementations of the models described in the present paper.

References

  1. Veverka, J. et al. Return to comet Tempel 1: overview of stardust-NExT results. Icarus 222, 424–435 (2013).

    Article  ADS  Google Scholar 

  2. Groussin, O. et al. Temporal morphological changes in the Imhotep region of comet 67P/Churyumov-Gerasimenko. Astron. Astrophys. 583, A36 (2015).

    Article  Google Scholar 

  3. El-Maarry, M. R. et al. Surface changes on comet 67P/Churyumov-Gerasimenko suggest a more active past. Science 355, 1392–1395 (2017).

    Article  ADS  Google Scholar 

  4. Fornasier, S. et al. Rosetta’s comet 67P/Churyumov-Gerasimenko sheds its dusty mantle to reveal its icy nature. Science 354, 1566–1570 (2016).

    Article  ADS  Google Scholar 

  5. Sunshine, J. M. et al. Exposed water ice deposits on the surface of comet 9P/Tempel 1. Science 311, 1453–1455 (2006).

    Article  ADS  Google Scholar 

  6. Filacchione, G. et al. Exposed water ice on the nucleus of comet 67P/Churyumov–Gerasimenko. Nature 529, 368–372 (2016).

    Article  ADS  Google Scholar 

  7. Raponi, A. et al. The temporal evolution of exposed water ice-rich areas on the surface of 67P/Churyumov-Gerasimenko: spectral analysis. Mon. Not. R. Astron. Soc. 462, S476–S490 (2016).

    Google Scholar 

  8. Barucci, M. A. et al. Detection of exposed H2O ice on the nucleus of comet 67P/Churyumov-Gerasimenko as observed by Rosetta OSIRIS and VIRTIS instruments. Astron. Astrophys. 595, A102 (2016).

    Article  Google Scholar 

  9. Oklay, N. et al. Long-term survival of surface water ice on comet 67P. Mon. Not. R. Astron. Soc. 469, S582–S597 (2017).

    Article  Google Scholar 

  10. Blum, J. et al. Evidence for the formation of comet 67P/Churyumov-Gerasimenko through gravitational collapse of a bound clump of pebbles. Mon. Not. R. Astron. Soc. 469, S755–S773 (2017).

    Article  Google Scholar 

  11. Ciarniello, M. et al. The global surface composition of 67P/Churyumov-Gerasimenko nucleus by Rosetta/VIRTIS. II) Diurnal and seasonal variability. Mon. Not. R. Astron. Soc. 462, S443–S458 (2016).

    Google Scholar 

  12. Filacchione, G. et al. An orbital water-ice cycle on comet 67P from colour changes. Nature 578, 49–52 (2020).

    Article  ADS  Google Scholar 

  13. Fulle, M. et al. How comets work: nucleus erosion versus dehydration. Mon. Not. R. Astron. Soc. 493, 4039–4044 (2020).

    Article  ADS  Google Scholar 

  14. Gundlach, B., Fulle, M. & Blum, J. On the activity of comets: understanding the gas and dust emission from comet 67/Churyumov-Gerasimenko’s south-pole region during perihelion. Mon. Not. R. Astron. Soc. 493, 3690–3715 (2020).

    Article  ADS  Google Scholar 

  15. Coradini, A. et al. Virtis: an imaging spectrometer for the Rosetta mission. Space Sci. Rev. 128, 529–559 (2007).

    Article  ADS  Google Scholar 

  16. Capaccioni, F. et al. The organic-rich surface of comet 67P/Churyumov-Gerasimenko as seen by VIRTIS/Rosetta. Science 347, aaa0628 (2015).

    Article  Google Scholar 

  17. Keller, H. U. et al. Insolation, erosion, and morphology of comet 67P/Churyumov-Gerasimenko. Astron. Astrophys. 583, A34 (2015).

    Article  Google Scholar 

  18. Fulle, M. et al. Evolution of the dust size distribution of comet 67P/Churyumov-Gerasimenko from 2.2 au to perihelion. Astrophys. J. 821, 19 (2016).

    Article  ADS  Google Scholar 

  19. Colangeli, L. et al. The Grain Impact Analyser and Dust Accumulator (GIADA) experiment for the Rosetta mission: design, performances and first results. Space Sci. Rev. 128, 803–821 (2007).

    Article  ADS  Google Scholar 

  20. Fulle, M. et al. The refractory-to-ice mass ratio in comets. Mon. Not. R. Astron. Soc. 482, 3326–3340 (2019).

    Article  ADS  Google Scholar 

  21. Capria, M. T. et al. How pristine is the interior of the comet 67P/Churyumov–Gerasimenko? Mon. Not. R. Astron. Soc. 469, S685–S694 (2017).

    Article  Google Scholar 

  22. O’Rourke, L. et al. The Philae lander reveals low-strength primitive ice inside cometary boulders. Nature 586, 697–701 (2020).

    Article  ADS  Google Scholar 

  23. Hu, X. et al. Seasonal erosion and restoration of the dust cover on comet 67P/Churyumov-Gerasimenko as observed by OSIRIS onboard Rosetta. Astron. Astrophys. 604, A114 (2017).

    Article  Google Scholar 

  24. Cambianica, P. et al. Long-term measurements of the erosion and accretion of dust deposits on comet 67P/Churyumov-Gerasimenko with the OSIRIS instrument. Mon. Not. R. Astron. Soc. 504, 2895–2910 (2021).

    Article  ADS  Google Scholar 

  25. Keller, H. U. et al. Seasonal mass transfer on the nucleus of comet 67P/Chuyumov-Gerasimenko. Mon. Not. R. Astron. Soc. 469, S357–S371 (2017).

    Article  Google Scholar 

  26. Bertini, I. et al. The backscattering ratio of comet 67P/Churyumov–Gerasimenko dust coma as seen by OSIRIS onboard Rosetta. Mon. Not. R. Astron. Soc. 482, 2924–2933 (2019).

    ADS  Google Scholar 

  27. Ciarletti, V. et al. CONSERT constrains the internal structure of 67P at a few metres size scale. Mon. Not. R. Astron. Soc. 469, S805–S817 (2017).

    Article  Google Scholar 

  28. De Sanctis, M. C. et al. The diurnal cycle of water ice on comet 67P/Churyumov–Gerasimenko. Nature 525, 500–503 (2015).

    Article  ADS  Google Scholar 

  29. Terada, H. et al. Detection of water ice in edge-on protoplanetary disks: HK Tauri B and HV Tauri C. Astrophys. J. 667, 303–307 (2007).

    Article  ADS  Google Scholar 

  30. Min, M. et al. The abundance and thermal history of water ice in the disk surrounding HD142527 from the DIGIT Herschel Key Program. Astron. Astrophys. 593, A11 (2016).

    Article  Google Scholar 

  31. Schoonenberg, D. & Ormel, C. W. Planetesimal formation near the snowline: in or out? Astron. Astrophys. 602, A21 (2017).

    Article  ADS  Google Scholar 

  32. Cambianica, P. et al. Time evolution of dust deposits in the Hapi region of comet 67P/Churyumov-Gerasimenko. Astron. Astrophys. 636, A91 (2020).

    Article  Google Scholar 

  33. Brownlee, D. et al. Comet 81P/Wild 2 under a microscope. Science 314, 1711–1716 (2006).

    Article  ADS  Google Scholar 

  34. Pätzold, M. et al. The nucleus of comet 67P/Churyumov–Gerasimenko – Part I: the global view – nucleus mass, mass-loss, porosity, and implications. Mon. Not. R. Astron. Soc. 483, 2337–2346 (2019).

    Article  ADS  Google Scholar 

  35. Ott, T. et al. Dust mass distribution around comet 67P/Churyumov–Gerasimenko determined via parallax measurements using Rosetta’s OSIRIS cameras. Mon. Not. R. Astron. Soc. 469, S276–S284 (2017).

    Article  Google Scholar 

  36. Keller, H. U. et al. OSIRIS – the scientific camera system onboard Rosetta. Space Sci. Rev. 128, 433–506 (2007).

    Article  ADS  Google Scholar 

  37. Bertini, I. et al. Search for satellites near comet 67P/Churyumov-Gerasimenko using Rosetta/OSIRIS images. Astron. Astrophys. 583, A19 (2015).

    Article  Google Scholar 

  38. Magrin, S. et al. Pre-hibernation performances of the OSIRIS cameras onboard the Rosetta spacecraft. Astron. Astrophys. 574, A123 (2015).

    Article  Google Scholar 

  39. Filacchione, G. et al. Seasonal exposure of carbon dioxide ice on the nucleus of comet 67P/Churyumov-Gerasimenko. Science 354, 1563–1566 (2016).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the Italian Space Agency (ASI, Italy; ASI-INAF agreements I/032/05/0 and I/024/12/0), Centre National d’Etudes Spatiales (CNES, France) and Deutsches Zentrum für Luft und Raumfahrt (DLR, Germany) for supporting this work. VIRTIS was built by a consortium from Italy, France and Germany, under the scientific responsibility of Istituto di Astrofisica e Planetologia Spaziali (IAPS) of INAF, Rome, which also led the scientific operations. The VIRTIS instrument development for ESA has been funded and managed by ASI (Italy), with contributions from Observatoire de Meudon (France) financed by CNES and from DLR (Germany). The VIRTIS instrument industrial prime contractor was former Officine Galileo, now the Leonardo Company, in Campi Bisenzio, Florence, Italy. Part of this research was supported by the ESA Express Procurement (EXPRO) request for proposal for IPL-PSS/JD/190.2016. D.K. acknowledges DFG grant no. KA 3757/2-1. This work was supported by the International Space Science Institute (ISSI) through the ISSI International Team ‘Characterization of cometary activity of 67P/Churyumov-Gerasimenko comet’. This research has made use of NASA’s Astrophysics Data System.

Author information

Authors and Affiliations

Authors

Contributions

M.C. wrote the manuscript, performed data analysis, modelling and interpretation, and contributed to VIRTIS data calibration. M. Fulle contributed to model conceptualization, data interpretation and manuscript drafting. A. Raponi, G.F., F.C., A. Rotundi and G.R. contributed to data interpretation. A. Raponi supported spectral modelling and contributed to VIRTIS data calibration. G.F. provided VIRTIS data calibration. F.C. managed the VIRTIS experiment. A. Rotundi managed the GIADA experiment. F.T. provided geometric files for VIRTIS nucleus observations. All authors, including M. Formisano, G.M., M.C.D.S., M.T.C., A.L., P.B., S.F., D.K., V.M., S.M., B.R. and G.A., contributed to the discussion of the results and helped with the manuscript preparation.

Corresponding author

Correspondence to Mauro Ciarniello.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–3, Figs. 1–12, Sections 1–7 and references.

Source data

Source Data Fig. 2

Data points (including errors) for the different curves.

Source Data Fig. 3

Data points for the different curves (including upper and lower bound values when appropriate).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciarniello, M., Fulle, M., Raponi, A. et al. Macro and micro structures of pebble-made cometary nuclei reconciled by seasonal evolution. Nat Astron 6, 546–553 (2022). https://doi.org/10.1038/s41550-022-01625-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-022-01625-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing