Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

DELLA functions evolved by rewiring of associated transcriptional networks

Abstract

DELLA proteins are land-plant specific transcriptional regulators that transduce environmental information to multiple processes throughout a plant’s life1,2,3. The molecular basis for this critical function in angiosperms has been linked to the regulation of DELLA stability by gibberellins and to the capacity of DELLA proteins to interact with hundreds of transcription factors4,5. Although bryophyte orthologues can partially fulfil functions attributed to angiosperm DELLA6,7, it is not clear whether the capacity to establish interaction networks is an ancestral property of DELLA proteins or is associated with their role in gibberellin signalling8,9,10. Here we show that representative DELLAs from the main plant lineages display a conserved ability to interact with multiple transcription factors. We propose that promiscuity was encoded in the ancestral DELLA protein, and that this property has been largely maintained, whereas the lineage-dependent diversification of DELLA-dependent functions mostly reflects the functional evolution of their interacting partners.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Capacity of interaction of DELLAs from different plant lineages.
Fig. 2: Heterologous complementation of DELLA function.
Fig. 3: Behaviour of DELLAs from different plant lineages as transcriptional regulators in A. thaliana.
Fig. 4: Comparison of the transcriptional regulatory activity of DELLAs across the plant lineage.

Similar content being viewed by others

Data availability

All materials generated in this study are freely available from the corresponding author upon request. All data are available in the main text or the supplementary materials. The RNA sequencing data generated in this study have been submitted to the NCBI BioProject database (https://www.ncbi.nlm.nih.gov/bioproject/) under accession numbers PRJNA695247 (‘Complementation of an Arabidopsis thaliana dellaKO with DELLAs from different plant species’) and PRJNA695244 (‘DELLA-dependent transcriptomes in different plant species’).

References

  1. Claeys, H., de Bodt, S. & Inze, D. Gibberellins and DELLAs: central nodes in growth regulatory networks. Trends Plant Sci. 19, 231–239 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Vera-Sirera, F., Gomez, M. D. & Perez-Amador, M. A. in Plant Transcription Factors: Evolutionary, Structural and Functional Aspects (ed. González, D. H.) 313–328 (Academic Press, 2015).

  3. Davière, J. M. & Achard, P. Gibberellin signaling in plants. Development 140, 1147–1151 (2013).

    Article  PubMed  Google Scholar 

  4. Marín-de La Rosa, N. et al. Large-scale identification of gibberellin-related transcription factors defines group VII ETHYLENE RESPONSE FACTORS as functional DELLA partners. Plant Physiol. 166, 1022–1032 (2014).

    Article  PubMed  Google Scholar 

  5. Lantzouni, O., Alkofer, A., Falter-Braun, P. & Schwechheimer, C. GROWTH-REGULATING FACTORS interact with DELLAs and regulate growth in cold stress. Plant Cell 32, 1018–1034 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yasumura, Y., Crumpton-Taylor, M., Fuentes, S. & Harberd, N. P. Step-by-step acquisition of the gibberellin-DELLA growth-regulatory mechanism during land-plant evolution. Curr. Biol. 17, 1225–1230 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Hernández-García, J. et al. Coordination between growth and stress responses by DELLA in the liverwort Marchantia polymorpha. Curr. Biol. 31, 3678–3686.e11 (2021).

    Article  PubMed  Google Scholar 

  8. Phokas, A. & Coates, J. C. Evolution of DELLA function and signaling in land plants. Evol. Dev. 23, 137–154 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Blázquez, M. A., Nelson, D. C. & Weijers, D. Evolution of plant hormone response pathways. Annu. Rev. Plant Biol. 71, 327–353 (2020).

    Article  PubMed  Google Scholar 

  10. Hernández-García, J., Briones-Moreno, A. & Blázquez, M. A. Origin and evolution of gibberellin signaling and metabolism in plants. Semin. Cell Dev. Biol. 109, 46–54 (2021).

    Article  PubMed  Google Scholar 

  11. Hernández-García, J., Briones-Moreno, A., Dumas, R. & Blázquez, M. A. Origin of gibberellin-dependent transcriptional regulation by molecular exploitation of a transactivation domain in della proteins. Mol. Biol. Evol. 36, 908–918 (2019).

    Article  PubMed  Google Scholar 

  12. Blanco-Touriñán, N., Serrano-Mislata, A. & Alabadí, D. Regulation of DELLA proteins by post-translational modifications. Plant Cell Physiol. 61, 1891–1901 (2020).

    Article  PubMed  Google Scholar 

  13. Dill, A. & Sun, T. P. Synergistic derepression of gibberellin signaling by removing RGA and GAI function in Arabidopsis thaliana. Genetics 159, 777–785 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. King, K. E., Moritz, T. & Harberd, N. P. Gibberellins are not required for normal stem growth in Arabidopsis thaliana in the absence of GAI and RGA. Genetics 159, 767–776 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Achard, P. et al. Gibberellin signaling controls cell proliferation rate in Arabidopsis. Curr. Biol. 19, 1188–1193 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Cao, D., Hussain, A., Cheng, H. & Peng, J. Loss of function of four DELLA genes leads to light- and gibberellin-independent seed germination in Arabidopsis. Planta 223, 105–113 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Alabadí, D., Gil, J., Blázquez, M. A. & García-Martínez, J. L. Gibberellins repress photomorphogenesis in darkness. Plant Physiol. 134, 1050–1057 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Achard, P., Renou, J. P., Berthomé, R., Harberd, N. P. & Genschik, P. Plant DELLAs restrain growth and promote survival of adversity by reducing the levels of reactive oxygen species. Curr. Biol. 18, 656–660 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Morris, J. L. et al. The timescale of early land plant evolution. Proc. Natl Acad. Sci. USA 115, E2274–E2283 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. An, F. et al. Coordinated regulation of apical hook development by gibberellins and ethylene in etiolated Arabidopsis seedlings. Cell Res. 22, 915–927 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ikeda, A. et al. slender Rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. Plant Cell 13, 999–1010 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bassel, G. W., Mullen, R. T. & Bewley, J. D. procera is a putative DELLA mutant in tomato (Solanum lycopersicum): effects on the seed and vegetative plant. J. Exp. Bot. 59, 585–593 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Hirano, K. et al. The GID1-mediated gibberellin perception mechanism is conserved in the lycophyte Selaginella moellendorffii but not in the bryophyte Physcomitrella patens. Plant Cell 19, 3058–3079 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jones, D. M. & Vandepoele, K. Identification and evolution of gene regulatory networks: insights from comparative studies in plants. Curr. Opin. Plant Biol. 54, 42–48 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Romani, F. & Moreno, J. E. Molecular mechanisms involved in functional macroevolution of plant transcription factors. New Phytol. 230, 1345–1353 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Briones-Moreno, A. et al. Evolutionary analysis of DELLA-associated transcriptional networks. Front. Plant Sci. 8, 626 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Livne, S. et al. Uncovering DELLA-independent gibberellin responses by characterizing new tomato procera mutants. Plant Cell 27, 1579–1594 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vesty, E. F. et al. The decision to germinate is regulated by divergent molecular networks in spores and seeds. New Phytol. 211, 952–966 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ishizaki, K., Chiyoda, S., Yamato, K. T. & Kohchi, T. Agrobacterium-mediated transformation of the haploid liverwort Marchantia polymorpha L., an emerging model for plant biology. Plant Cell Physiol. 49, 1084–1091 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Murashige, T. & Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15, 473–497 (1962).

    Article  CAS  Google Scholar 

  31. Gamborg, O. L., Miller, R. A. & Ojima, K. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell. Res. 50, 151–158 (1968).

    Article  CAS  PubMed  Google Scholar 

  32. Moody, L. A. et al. ARABIDILLO gene homologues in basal land plants: species-specific gene duplication and likely functional redundancy. Planta 236, 1927–1941 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Kubota, A., Ishizaki, K., Hosaka, M. & Kohchi, T. Efficient Agrobacterium-mediated transformation of the liverwort Marchantia polymorpha using regenerating thalli. Biosci. Biotechnol. Biochem. 77, 167–172 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Clough, S. J. & Bent, A. F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Li, F. W. et al. Anthoceros genomes illuminate the origin of land plants and the unique biology of hornworts. Nat. Plants 6, 259–272 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wallace, I. M., O’Sullivan, O., Higgins, D. G. & Notredame, C. M-Coffee: combining multiple sequence alignment methods with T-Coffee. Nucleic Acids Res. 34, 1692–1699 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Proost, S. et al. PLAZA: a comparative genomics resource to study gene and genome evolution in plants. Plant Cell 21, 3718–3731 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Patel, R. V., Nahal, H. K., Breit, R. & Provart, N. J. BAR expressolog identification: expression profile similarity ranking of homologous genes in plant species. Plant J. 71, 1038–1050 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Goodstein, D. M. et al. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 40, D1178–D1186 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Chen, F., Mackey, A. J., Stoeckert, C. J. & Roos, D. S. OrthoMCL-DB: querying a comprehensive multi-species collection of ortholog groups. Nucleic Acids Res. 34, D363–D368 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Leebens-Mack, J. H. et al. One thousand plant transcriptomes and the phylogenomics of green plants. Nature 574, 679–685 (2019).

    Article  Google Scholar 

  43. Sarrion-Perdigones, A. et al. GoldenBraid 2.0: a comprehensive DNA assembly framework for plant synthetic biology. Plant Physiol. 162, 1618–1631 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Aliaga-Franco, N. et al. Identification of transgene-free CRISPR-edited plants of rice, tomato, and Arabidopsis by monitoring DsRED fluorescence in dry seeds. Front. Plant Sci. 10, 1150 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ishizaki, K. et al. Development of gateway binary vector series with four different selection markers for the liverwort Marchantia polymorpha. PLoS ONE 10, e0138876 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Tian, F., Yang, D.-C., Meng, Y.-Q., Jin, J. & Gao, G. PlantRegMap: charting functional regulatory maps in plants. Nucleic Acids Res. 48, D1104–D1113 (2020).

    CAS  PubMed  Google Scholar 

  52. Ritter, B. et al. Two WXXF-based motifs in NECAPs define the specificity of accessory protein binding to AP-1 and AP-2. EMBO J. 23, 3701–3710 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank D. Weiss and S. Livne (The Hebrew University of Jerusalem) for the tomato pro mutant and advice on the selection of homozygous seedlings, and K. Hirano (Nagoya University) for the rice seeds. The Ppdellaab mutant was obtained from Y. Yasumura, E. Belfield and N.P. Harberd (University of Oxford). We also thank J. Agustí, B. Catarino and M. Sanmartín (Instituto de Biología Molecular y Celular de Plantas, Valencia) for excellent input on the manuscript. Work was performed with grants BFU2016-80621-P and PID2019-110717-GB funded by Spanish MCIN/AEI /10.13039/501100011033/ and by ‘ERDF, A way of making Europe’.

Author information

Authors and Affiliations

Authors

Contributions

A.B.-M., J.H.-G. and M.A.B. conceptualized the project. A.B.-M., J.H.-G., C.V.-C., N.B.-T., C.Ú. and A.P. conducted the investigation. A.B.-M., J.H.-G., C.V.-C., N.B.-T. and M.A.B. conducted the formal analysis. P.D.C., J.C.C., D.A. and M.A.B. supervised the project. J.C.C. and M.A.B. acquired the funding. A.B.-M. and M.A.B. wrote the original draft of the paper. All authors revised and edited the paper.

Corresponding author

Correspondence to Miguel A. Blázquez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks Xiangdong Fu, Javier Moreno and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Phylogenetic tree of the DELLA family.

a, Maximum likelihood phylogenetic tree of the DELLA family using representative DELLA proteins. Sequences used in Y2H assays have been highlighted with a solid red circle (when used for both homologous and heterologous tests) or an empty red circle (when only used for heterologous tests with AtTFs). Proteins included in the analysis have been previously described11, with the only exception of Anthoceros agrestis DELLA (see Methods, note that AaDELLA1 and AaDELLA2 are DELLAs from Artemisia annua in contrast to that of A. agrestis, AaDELLA). DELLA clades are named after Ref. 11. Statistical support associated with branches are SH-like aLRT values, depicted as colour-coded circles in branch nodes. b, Scheme of the evolutionary path followed by the different DELLA clades in land plants inferred from the tree in panel a. ‘Basal’ lineages are defined by the following species: Vitis vinifera, Kalanchoe laxiflora for Basal rosids; Actinidia chinensis, Beta vulgaris, Amaranthus hypochondriacus for Basal asterids; Nelumbo nucifera, Aquilegia caerulea for Basal eudicots; Phalaenopsis equestris, Spirodela polyrrhiza for basal monocots; Magnolia grandiflora, Amborella trichopoda for basal angiosperms.

Extended Data Fig. 2 Protein sequence conservation in the GRAS domain of several GRAS families.

Conservation per residue was calculated on previously available alignments from multiple land plant GRAS proteins11 using ProtSkin software52. Box plots represent values from orthologues previously assigned to each family11 (n = 50 for all families except for DELLA and SCL3 families, in which n = 53). Letters indicate statistical differences between groups after one-way ANOVA followed by Tukey’s HSD post hoc test (p < 0.01).

Extended Data Fig. 3 DELLA accumulation in complemented lines (pRGA::DELLA-YFP).

a–c, Western Blot assay of whole 7-day-old seedlings grown with 0.5 µM PAC (a, b) and leaves from 30-day-old adult plants watered with 10 µM PAC. (c). In a, dellaKO and pRGA::RGA-YFP (line #1) are shown as controls for YFP detection. Ponceau staining prior immunostaining is shown as loading control. In b and c, detection of DET3 protein was used as internal control; DELLA proteins fused to YFP were detected with the anti-GFP antibody JL-8. Arrowheads indicate expected band size. The analysis shown here was confirmed in a second independent test. d, Confocal microscopy images of complementation lines in 7-day-old seedling root tips. YFP fluorescent signal in green, dellaKO root tip shape is marked with a red dotted line. Seedlings were grown in half strength MS medium supplemented with 0.5 μM PAC. The images shown here are representative from n = 6 seedlings examined per line. Scale bar = 50 µm. e, Transcript levels of MpDELLA and AtRGA transgenes in 14-day-old M. polymorpha overexpression lines (see Fig. 2) determined by qPCR. Bars represent the mean number of transcripts per 109 transcript of MpEF1α calculated from three independent biological replicates (shown as grey dots). ND indicates non detected expression of AtRGA.

Extended Data Fig. 4 Heterologous complementation of dellaKO mutants.

Wild-type A. thaliana plants (WT), plants mutant for the five DELLA genes (AtdellaKO) and AtdellaKO plants transformed with DELLAs from the indicated species (At, Sl, Pa, Sm, or Mp) under the control of the AtRGA promoter and terminator, had their phenotypes examined in the presence of 0.5 μM PAC. a, Stem length of 30-day-old plants. n = 15 plants per genotype were measured. b, Percentage of germinated seeds, scored after 24 h at 22 °C in darkness with 1 µM PAC, in three independent experiments. Graphs show individual data points (dots) and data mean (horizontal black bar). Letters indicate statistical differences between groups after one-way ANOVA followed by Tukey’s HSD post hoc test (p < 0.01).

Extended Data Fig. 5 Heterologous and homologous interaction of putative tomato DELLA interactors.

Yeast 2-hybrid assay showing interaction (or lack of it) of the tomato orthologues of At1G74840 and AT5G01380 with AtRGA and SlPRO. H, Histidine; 3AT, 3-amino-1,2,4-triazole; AD, Activation Domain; BD, Binding Domain.

Supplementary information

Supplementary Information

Supplementary Figs. 1–3.

Reporting Summary

Supplementary Tables

Supplementary Tables 1–12. Table 1: Transcription factors and DELLA sequences used in this study. Table 2: Yeast 2-hybrid assay results. Table 3: Transcriptomic analysis of dellaKO complementation. Table 4: Gene Ontology analysis of dellaKO complementation. Table 5: TF-enrichment analysis in the set of 211 conserved DEGs of dellaKO complementation. Table 6: TF-enrichment analysis of the exclusive set of SlPRO-regulated genes. Table 7: DELLA-dependent transcriptomes in each species. Table 8: Orthologous relationships for the genes of all the species used in this study. Table 9: Gene Ontology analysis of DELLA-dependent transcriptomes in each species. Table 10: TF-enrichment analysis of DELLA-dependent transcriptomes in each species. Table 11: Oligonucleotides used in this study. Table 12: Sequences of truncated DELLA proteins used in this study.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Briones-Moreno, A., Hernández-García, J., Vargas-Chávez, C. et al. DELLA functions evolved by rewiring of associated transcriptional networks. Nat. Plants 9, 535–543 (2023). https://doi.org/10.1038/s41477-023-01372-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-023-01372-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing