Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Molecular design of reactive polycaprolactone that can be induced into shape-memory materials promotes further functionalization

Abstract

In this study, polymers with different copolymerization composition ratios of α-chloro-ε-caprolactone (α-ClCL) and ε-caprolactone (ε-CL) were prepared using α-ClCL, which can polymerize on its own. The copolymers were prepared by using trimethylolpropane as the initiator, and acryloyl groups were added to the polymer ends to form macromonomers capable of cross-linking reactions. The functionalized macromonomers were confirmed to possess shape-memory properties when cross-flinked in film form by heat. The composition of the functional groups in the macromonomer could be adjusted by changing the ratio of α-ClCL to ε-CL used in the copolymerization. In addition, the chloro group introduced by α-ClCL was converted into an azide group. Both the cross-linked film with chloro groups and the film converted to azide groups prepared in this study exhibited shape-memory according to the softening point of the film. Through fluorescence microscopy, it was confirmed that the converted azide groups were modified with alkylated rhodamine B based on the click reaction. Furthermore, azide-assisted films are expected to add various functions through click reactions in the future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Satti SM, Shah AA. Polyester‐based biodegradable plastics: an approach towards sustainable development. Lett Appl Microbiol 2020;70:413–30. https://doi.org/10.1111/lam.13287

    Article  CAS  PubMed  Google Scholar 

  2. Becker G, Wurm FR. Functional biodegradable polymers via ring-opening polymerization of monomers without protective groups. Chem Soc Rev 2018;47:7739–82. https://doi.org/10.1039/c8cs00531a

    Article  CAS  PubMed  Google Scholar 

  3. Nakamura A, Kobayashi N, Koga N, Iino R. Positive charge introduction on the surface of thermostabilized PET hydrolase facilitates PET binding and degradation. ACS Catal. 2021;11:8550–64. https://doi.org/10.1021/acscatal.1c01204

    Article  CAS  Google Scholar 

  4. Lu H, Diaz DJ, Czarnecki N-J, Zhu C, Kim W, Shroff R, et al. Machine learning-aided engineering of hydrolases for PET depolymerization. Nature. 2022;604:662–7. https://doi.org/10.1038/s41586-022-04599-z

    Article  CAS  PubMed  Google Scholar 

  5. Yamashita T, Matsumoto T, Yamada R, Ogino H. Display of PETase on the cell surface of Escherichia coli using the anchor protein PgsA. Appl Biochem Biotechnol 2024 https://doi.org/10.1007/s12010-023-04837-8

  6. Mecerreyes D, Humes J, Miller R-D, Hedrick J-L, Detrembleur C, Lecomte P, et al. First example of an unsymmetrical difunctional monomer polymerizable by two living/controlled methods. Macromol Rapid Commun 2000;21:779–84.

    Article  CAS  Google Scholar 

  7. Groner MD, Fabreguette FH, Elam JW, George SM. Low-temperature Al2O3 atomic layer deposition. Chem Mater 2004;16:639–45. https://doi.org/10.1021/cm0304546

    Article  CAS  Google Scholar 

  8. Alteheld A, Feng Y, Kelch S, Lendlein A. Biodegradable, amorphous copolyester‐urethane networks having shape‐memory properties. Angew Chem Int Ed 2005;44:1188–92. https://doi.org/10.1002/anie.200461360

    Article  CAS  Google Scholar 

  9. Ebara M, Uto K, Idota N, Hoffman J, Aoyagi T. The taming of the cell: shape-memory nanopatterns direct cell orientation. Int J Nanomed 2014;9:117–26. https://doi.org/10.2147/ijn.s50677

    Article  CAS  Google Scholar 

  10. Uto K, Aoyagi T, DeForest CA, Hoffman AS, Ebara M. A combinational effect of “bulk” and “surface” shape‐memory transitions on the regulation of cell alignment. Adv Healthcare Mater. 2017;6 https://doi.org/10.1002/adhm.201601439

  11. Iwamatsu K, Uto K, Takeuchi Y, Hoshi T, Aoyagi T. Preparation of temperature-responsive, cationized, poly(ε-caprolactone)-based, cross-linked materials by a macromonomer design and positive charge control on the surface. Polym J 2018;50:447–54. https://doi.org/10.1038/s41428-018-0030-1

    Article  CAS  Google Scholar 

  12. Makiguchi K, Satoh T, Kakuchi T. Diphenyl phosphate as an efficient cationic organocatalyst for controlled/living ring-opening polymerization of δ-valerolactone and ε-caprolactone. Macromolecules. 2011;44:1999–2005. https://doi.org/10.1021/ma200043x

    Article  CAS  Google Scholar 

  13. Takao A, Fusae M, Yu N. Preparation of cross-linked aliphatic polyester and application to thermo-responsive material. J Controlled Release 1994;32:87–96. https://doi.org/10.1016/0168-3659(94)90228-3

    Article  Google Scholar 

  14. Uto K, Yamamoto K, Hirase S, Aoyagi T. Temperature-responsive cross-linked poly(ε-caprolactone) membrane that functions near body temperature. J Controlled Release 2006;110:408–13. https://doi.org/10.1016/j.jconrel.2005.10.024

    Article  CAS  Google Scholar 

  15. Zako T, Matsushita S, Hoshi T, Aoyagi T. Direct surface modification of polycaprolactone-based shape memory materials to introduce positive charge aiming to enhance cell affinity. Materials. 2021;14:5797 https://doi.org/10.3390/ma14195797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Houk K-N, Jabbari A, Hall H-K, Alemán C. Why δ-valerolactone polymerizes and γ-butyrolactone does not. J Org Chem 2008;73:2674–8. https://doi.org/10.1021/jo702567v

    Article  CAS  PubMed  Google Scholar 

  17. Moore T, Adhikari R, Gunatillake P. Chemosynthesis of bioresorbable poly(γ-butyrolactone) by ring-opening polymerisation: a review. Biomaterials. 2005;26:3771–82. https://doi.org/10.1016/j.biomaterials.2004.10.002

    Article  CAS  PubMed  Google Scholar 

  18. Lenoir S, Riva R, Lou X, Detrembleur CH, Jérôme R, Lecomte PH. Ring-opening polymerization of α-chloro-ε-caprolactone and chemical modification of poly(α-chloro-ε-caprolactone) by atom transfer radical processes. Macromolecules. 2004;37:4055–61. https://doi.org/10.1021/ma035003l

    Article  CAS  Google Scholar 

  19. Wang SW, Lin YK, Fang JY, Lee R-S. Photo-responsive polymeric micelles and prodrugs: synthesis and characterization. RSC Adv. 2018;8:29321–37. https://doi.org/10.1039/c8ra04580a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bolley A, Mameri S, Dagorne S. Controlled and highly effective ring‐opening polymerization of α‐chloro‐ε‐caprolactone using Zn‐ and Al‐based catalysts. J Polym Sci 2020;58:1197–206. https://doi.org/10.1002/pol.20190214

    Article  CAS  Google Scholar 

  21. Yin G, Chen G, Zhou Z, Li Q. Modification of PEG-b-PCL block copolymer with high melting temperature by the enhancement of POSS crystal and ordered phase structure. RSC Adv. 2015;5:33356–63. https://doi.org/10.1039/c5ra01971k

    Article  CAS  Google Scholar 

  22. Bexis P, Thomas AW, Bell CA, Dove A-P. Synthesis of degradable poly(ε-caprolactone)-based graft copolymers via a “grafting-from” approach. Polym Chem 2016;7:7126–34. https://doi.org/10.1039/c6py01674j

    Article  CAS  Google Scholar 

  23. Liu M, Vladimirov N, Fréchet J-M-J. A new approach to hyperbranched polymers by ring-opening polymerization of an ab monomer:  4-(2-hydroxyethyl)-ε-caprolactone. Macromolecules. 1999;32:6881–4. https://doi.org/10.1021/ma990785x

    Article  CAS  Google Scholar 

  24. Tian D, Dubois PH, Jérôme R. Macromolecular engineering of polylactones and polylactides. 23. synthesis and characterization of biodegradable and biocompatible homopolymers and block copolymers based on 1,4,8-Trioxa[4.6]Spiro-9-Undecanone. Macromolecules. 1997;30:1947–54. https://doi.org/10.1021/ma961614k

    Article  CAS  Google Scholar 

  25. Taniguchi I, Lovell N-G. Low-temperature processable degradable polyesters. Macromolecules. 2012;45:7420–8. https://doi.org/10.1021/ma301230y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhou, Z, Meng, Y, Wei, C, Bai, Y, Wang, X, Quan, D, et al. Linear shape memory polyester with programmable splitting of crystals. Macromol Mater Eng. 2021;306 https://doi.org/10.1002/mame.202100254

  27. Van Horn BA, Wooley KL. Toward cross-linked degradable polyester materials:  investigations into the compatibility and use of reductive amination chemistry for cross-linking. Macromolecules. 2007;40:1480–8. https://doi.org/10.1021/ma061654g

    Article  CAS  Google Scholar 

  28. Mecerreyes D, Miller R-D, Hedrick J-L, Detrembleur C, Jérôme R. Ring-opening polymerization of 6-hydroxynon-8-enoic acid lactone: novel biodegradable copolymers containing allyl pendent groups. J Polym Sci Part A: Polym Chem 2000;38:870–5.

    Article  CAS  Google Scholar 

  29. Lou X, Detrembleur C, Lecomte PH, Jérôme R. Living ring-opening (CO)polymerization of 6,7-Dihydro-2(5H)-Oxepinone into unsaturated aliphatic polyesters. Macromolecules. 2001;34:5806–11.

    Article  CAS  Google Scholar 

  30. El Jundi A, Buwalda S, Bethry A, Hunger S, Coudane J, Bakkour Y, et al. Double-hydrophilic block copolymers based on functional poly(ε-Caprolactone)s for pH-dependent controlled drug delivery. Biomacromolecules. 2019;21:397–407. https://doi.org/10.1021/acs.biomac.9b01006

    Article  CAS  PubMed  Google Scholar 

  31. Wang G, Shi Y, Fu Z, Yang W, Huang Q, Zhang Y. Controlled synthesis of poly(ε-Caprolactone)-graft-polystyrene by atom transfer radical polymerization with poly(ε-Caprolactone-Co-α-Bromo-ε-Caprolactone) copolymer as macroinitiator. Polymer. 2005;46:10601–6. https://doi.org/10.1016/j.polymer.2005.06.105

    Article  CAS  Google Scholar 

  32. Gao C, Tsou CH, Zeng CY, Yuan L, Peng R, Zhang XM. Organocatalyzed ring-opening copolymerization of α-Bromo-γ-butyrolactone with ε-caprolactone for the synthesis of functional aliphatic polyesters – pre-polymers for graft copolymerization. Des Monomers Polym 2018;21:193–201. https://doi.org/10.1080/15685551.2018.1550288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lee R, Huang Y. Synthesis and characterization of amphiphilic block–graft MPEG‐b‐(PαN3CL‐g‐alkyne) degradable copolymers by ring‐opening polymerization and click chemistry. J Polym Sci, Part A Polym Chem 2008;46:4320–31. https://doi.org/10.1002/pola.22741

    Article  CAS  Google Scholar 

  34. Suksiriworapong J, Sripha K, Junyaprasert VB. Synthesis and characterization of bioactive molecules grafted on poly(ɛ-Caprolactone) by “click” chemistry. Polymer. 2010;51:2286–95. https://doi.org/10.1016/j.polymer.2010.03.034

    Article  CAS  Google Scholar 

  35. Conte C, Costabile G, d’Angelo I, Pannico M, Musto P, Grassia G, et al. Skin transport of PEGylated poly(ε-Caprolactone) nanoparticles assisted by (2-Hydroxypropyl)-β-cyclodextrin. J Colloid Interface Sci 2015;454:112–20. https://doi.org/10.1016/j.jcis.2015.05.010

    Article  CAS  PubMed  Google Scholar 

  36. Riva R, Lussis P, Lenoir S, Jérôme C, Jérôme R, Lecomte P. Contribution of “click chemistry” to the synthesis of antimicrobial aliphatic copolyester. Polymer. 2008;49:2023–8. https://doi.org/10.1016/j.polymer.2008.03.008

    Article  CAS  Google Scholar 

  37. Ebara M, Kotsuchibashi Y, Uto K, Aoyagi T, Kim YJ, Narain R, et al. Smart Biomaterials, NIMS Monographs, Springer Tokyo, 2014, p. 321-36.

  38. Leroux F, Campagne C, Perwuelz A, Gengembre L. Polypropylene film chemical and physical modifications by dielectric barrier discharge plasma treatment at atmospheric pressure. J Colloid Interface Sci 2008;328:412–20. https://doi.org/10.1016/j.jcis.2008.09.062

    Article  CAS  PubMed  Google Scholar 

  39. Maegawa K, Tanimoto H, Onishi S, Tomohiro T, Morimoto T, Kakiuchi K. Taming the reactivity of alkyl azides by intramolecular hydrogen bonding: site-selective conjugation of unhindered diazides. Org Chem Front. 2021;8:5793–803. https://doi.org/10.1039/D1QO01088C

    Article  CAS  Google Scholar 

  40. Wang J, Horwitz MA, Dürr AB, Ibba F, Pupo G, Gao Y, et al. Asymmetric azidation under hydrogen bonding phase-transfer catalysis: a combined experimental and computational study. J Am Chem Soc. 2022;144:4572–84. https://doi.org/10.1021/jacs.1c13434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Uto K, Matsushita Y, Ebara M. Multiphase PCL semi-interpenetrating networks exhibiting the triple- and stress-free two-way shape memory effect. Polym Chem 2023;14:1478–87. https://doi.org/10.1039/d2py01607a

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Scanning electron microscopy and energy dispersive X-ray spectroscopy were performed at the Joint Research Center for Environmentally Conscious Technologies in Materials Science at ZAIKEN, Waseda University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takao Aoyagi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshida, T., Hoshi, T. & Aoyagi, T. Molecular design of reactive polycaprolactone that can be induced into shape-memory materials promotes further functionalization. Polym J (2024). https://doi.org/10.1038/s41428-024-00948-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41428-024-00948-z

Search

Quick links