Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Synthesis of phosphine sulfide group-containing aromatic poly(ether)s with aliphatic substituents on the phosphorus atoms and low dielectric properties

Abstract

Recently, materials with low dielectric properties have attracted particular attention because low dielectric properties are key factors in realizing next-generation communication devices with high-speed and low-loss signal transmission and processing and electronic components with high electrical breakdown voltages. In this study, phosphine sulfide (P=S) group-containing aromatic poly(ether)s with aliphatic substituents on the phosphorus atoms were developed for use as low dielectric materials, taking advantage of the low polarity of the P=S groups and the less polarizable nature of the aliphatic moieties. These polymers have moderate to high molecular weights (number-average molecular weights of 8900–35,000 and weight-average molecular weights of 31,900–178,000), good thermal stability (5% weight loss temperatures of 363–423 °C), and high glass transition temperatures (Tg = 210–219 °C). In addition, some of the polymers exhibited low dielectric constants (ε = 2.64–2.68 at 10 GHz and 2.56–2.59 at 20 GHz) and low dielectric dissipation factors (tanδ = 0.0034–0.0035 at 10 GHz and 0.0036–0.0037 at 20 GHz). These results may indicate that P=S group-containing aromatic poly(ether)s with high aliphatic contents are potentially applicable to electrically insulating materials with good dielectric properties in the GHz frequency range and could contribute to high-performance electronic devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Maier G. Low dielectric constant polymers for microelectronics. Prog Polym Sci. 2001;26:3–65.

    Article  CAS  Google Scholar 

  2. Volksen W, Miller RD, Dubois G. Low dielectric constant materials. Chem Rev. 2010;110:56–110.

    Article  CAS  PubMed  Google Scholar 

  3. Wang L, Liu C, Shen S, Xu M, Liu X. Low dielectric constant polymers for high speed communication network. Adv Ind Eng Polym Res. 2020;3:138–48.

    Google Scholar 

  4. Wang L, Yang J, Cheng W, Zou J, Zhao D. Progress on polymer composites with low dielectric constant and low dielectric loss for high-frequency signal transmission. Front Mater 2021;8:774843.

    Article  Google Scholar 

  5. Prateek, Thakur VK, Gupta RK. Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chem Rev. 2016;116:4260–317.

    Article  CAS  PubMed  Google Scholar 

  6. Iacono ST, Budy SM, Jin J, Smith DW. Science and technology of perfluorocyclobutyl aryl ether polymers. J Polym Sci Part A: Polym Chem. 2007;45:5705–21.

    Article  CAS  Google Scholar 

  7. Dhara MG, Banerjee S. Fluorinated high-performance polymers: Poly(arylene ether)s and aromatic polyimides containing trifluoromethyl groups. Prog Polym Sci. 2010;35:1022–77.

    Article  CAS  Google Scholar 

  8. Amou S, Yamada S, Takahashi A, Nagai A, Tomoi M. Mechanical and dielectric properties of cured 1,2-bis(vinylphenyl)ethane resin modified with poly(phenylene oxide). J Appl Polym Sci. 2004;92:1252–8.

    Article  CAS  Google Scholar 

  9. Grove NR, Kohl PA, Allen SAB, Jayaraman S, Shick R. Functionalized polynorbornene dielectric polymers: Adhesion and mechanical properties. J Polym Sci Part B: Polym Phys. 1999;37:3003–10.

    Article  CAS  Google Scholar 

  10. Liu B, Li Y, Mathews AS, Wang Y, Yan W, Abraham S, Ha CS, Park DW, Kim I. Synthesis of vinyl-type functionalized polynorbornenes with cyclic pendant imide side groups by using palladium-based catalyst for low dielectric constant materials. React Funct Polym. 2008;68:1619–24.

    Article  CAS  Google Scholar 

  11. Long TM, Swager TM. Molecular design of free volume as a route to low-κ dielectric materials. J Am Chem Soc. 2003;125:14113–9.

    Article  CAS  PubMed  Google Scholar 

  12. Tsuchiya K, Ishii H, Shibasaki Y, Ando S, Ueda M. Synthesis of a novel poly(binaphthylene ether) with a low dielectric constant. Macromolecules. 2004;37:4794–7.

    Article  CAS  Google Scholar 

  13. Gronewald S, Cassidy PE, Fitch JW, Arbaugh J, Herbold H, Jurek D. Poly(aryl ether ketones) bearing alkyl side chains. High Perform Polym. 2001;13:S117–21.

    Article  CAS  Google Scholar 

  14. Wang G, Geng Z, Zhu X, Zhang S, Liu X. Synthesis and characterization of soluble low-k poly (aryl ether ketone) copolymers with pendent adamantyl groups. High Perform Polym. 2010;22:779–98.

    Article  CAS  Google Scholar 

  15. Wang C, Xu C, Li Q, Chen W, Zhao X. Synthesis of new fluorene-based poly(aryl ether) containing pendant tert-butyl groups for low dielectric materials. Colloid Polym Sci. 2015;293:313–8.

    Article  CAS  Google Scholar 

  16. Seike Y, Okude Y, Iwakura I, Chiba I, Ikeno T, Yamada T. Synthesis of polyphenylene ether derivatives: Estimation of their dielectric constants. Macromol Chem Phys. 2003;204:1876–81.

    Article  CAS  Google Scholar 

  17. Fukuhara T, Shibasaki Y, Ando S, Ueda M. Synthesis of thermosetting poly(phenylene ether) containing allyl groups. Polymer. 2004;45:843–7.

    Article  CAS  Google Scholar 

  18. Chen YC, Reddy KSK, Lin YA, Wang MW, Lin CH. Tetrafluorophenylene-containing vinylbenzyl ether-terminated oligo(2,6-dimethyl-1,4-phenylene ether) with better thermal, dielectric, and flame-retardant properties for application in high-frequency communication. ACS Omega. 2022;7:26396–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Qin Y, Yu X, Fang Z, He X, Qu M, Han M, Lu D, Xue K, Wang K. Recent progress on polyphenylene oxide-based thermoset systems for high-performance copper-clad laminates. J Phys D Appl Phys. 2023;56:064002.

    Article  Google Scholar 

  20. Leu CM, Chang YT, Wei KH. Polyimide-side-chain tethered polyhedral oligomeric silsesquioxane nanocomposites for low-dielectric film applications. Chem Mater. 2003;15:3721–7.

    Article  CAS  Google Scholar 

  21. Wang J, Zhou J, Jin K, Wang L, Sun J, Fang Q. A new fluorinated polysiloxane with good optical properties and low dielectric constant at high frequency based on easily available tetraethoxysilane (TEOS). Macromolecules. 2017;50:9394–402.

    Article  CAS  Google Scholar 

  22. Liu F, Chen X, Fang L, Sun J, Fang Q. An effective strategy for the preparation of intrinsic low-k and ultralow-loss dielectric polysiloxanes at high frequency by introducing trifluoromethyl groups into the polymers. Polym Chem. 2020;11:6163–70.

    Article  CAS  Google Scholar 

  23. Kamitani T, Nakamura M, Watase S, Suzuki T, Imoto H, Naka K. Synthesis of low-dielectric polyureas by incorporating phenyl-substituted cage silsesquioxanes in the main chain. ACS Appl Polym Mater. 2023;5:5169–76.

    Article  CAS  Google Scholar 

  24. Goto K, Kakuta M, Inoue Y, Matsubara M. Low dielectric and thermal stable polyimides with fluorene structure. J Photopolym Sci Technol. 2000;13:313–6.

    Article  CAS  Google Scholar 

  25. Vora RH, Krishnan PSG, Goh SH, Chung TS. Synthesis and properties of designed low-k fluoro-copolyetherimides. Part 1. Adv Funct Mater. 2001;11:361–73.

    Article  CAS  Google Scholar 

  26. Bei R, Qian C, Zhang Y, Chi Z, Liu S, Chen X, Xu J, Aldred MP. Intrinsic low dielectric constant polyimides: Relationship between molecular structure and dielectric properties. J Mater Chem C. 2017;5:12807–15.

    Article  CAS  Google Scholar 

  27. Lv P, Dong Z, Dai X, Wang H, Qiu X. Synthesis and properties of ultralow dielectric porous polyimide films containing adamantane. J Polym Sci Part A: Polym Chem. 2018;56:549–59.

    Article  CAS  Google Scholar 

  28. Kuo CC, Lin YC, Chen YC, Wu PH, Ando S, Ueda M, Chen WC. Correlating the molecular structure of polyimides with the dielectric constant and dissipation factor at a high frequency of 10 GHz. ACS Appl Polym Mater. 2021;3:362–71.

    Article  CAS  Google Scholar 

  29. Kirchhoff RA, Bruza KJ. Benzocyclobutenes in polymer synthesis. Prog Polym Sci. 1993;18:85–185.

    Article  CAS  Google Scholar 

  30. Farona MF. Benzocyclobutenes in polymer chemistry. Prog Polym Sci. 1996;21:505–55.

    Article  CAS  Google Scholar 

  31. Yang J, Liu S, Zhu F, Huang Y, Li B, Zhang L. New polymers derived from 4‐vinylsilylbenzocyclobutene monomer with good thermal stability, excellent film-forming property, and low-dielectric constant. J Polym Sci Part A: Polym Chem. 2011;49:381–91.

    Article  CAS  Google Scholar 

  32. Tong J, Diao S, Jin K, Yuan C, Wang J, Sun J, Fang Q. Benzocyclobutene-functionalized poly(m-phenylene): A novel polymer with low dielectric constant and high thermostability. Polymer. 2014;55:3628–33.

    Article  CAS  Google Scholar 

  33. Lim H, Chang JY. Thermally stable and flame retardant low dielectric polymers based on cyclotriphosphazenes. J Mater Chem. 2010;20:749–54.

    Article  CAS  Google Scholar 

  34. Hifumi R, Tomita I. Low dielectric, good adhesive, and flame-retardant aromatic poly(ether)s with phosphine sulfide groups. submitted.

  35. Hifumi R, Tomita I. Synthesis and low dielectric properties of phosphine sulfide-containing aromatic poly(ether)s. Polym Prepr Jpn. 2022;71:2F14.

    Google Scholar 

  36. Hifumi R, Tomita I. High refractive and low birefringent materials based on poly(arylene ether phosphine oxide)s and poly(arylene ether phosphine sulfide)s. Polymer. 2020;186:121855.

    Article  CAS  Google Scholar 

  37. Watson KA, Palmieri FL, Connell JW. Space environmentally stable polyimides and copolyimides derived from [2,4-bis(3-aminophenoxy)phenyl]diphenylphosphine oxide. Macromolecules. 2002;35:4968–74.

    Article  CAS  Google Scholar 

  38. Allam C, Liu KJ, McGrath JE, Mohanty DK. Preparation and properties of novel aromatic poly(thioethers) derived from 4,4’-thiobisbenzenethiol. Macromol Chem Phys. 1999;200:1854–62.

    Article  CAS  Google Scholar 

  39. Hayashi M. Phosphine sulfides: New aspects of organophosphorus compounds. Chem Lett. 2021;50:1–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Masato Koizumi (Materials Analysis Division, Open Facility Center, Tokyo Institute of Technology) for the high-resolution mass spectrometry data. This work was financially supported by JSPS KAKENHI grant number JP22K14722 and the Tokyo Tech Academy of Energy and Informatics.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ryoyu Hifumi or Ikuyoshi Tomita.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hifumi, R., Ochiai, K. & Tomita, I. Synthesis of phosphine sulfide group-containing aromatic poly(ether)s with aliphatic substituents on the phosphorus atoms and low dielectric properties. Polym J (2024). https://doi.org/10.1038/s41428-024-00940-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41428-024-00940-7

Search

Quick links