Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Controlled synthesis of cylindrical micelles via crystallization-driven self-assembly (CDSA) and applications

Abstract

Recently, crystallization-driven living self-assembly (CDSA) has attracted much attention for its ability to generate 1D cylindrical micelles and mimic chain growth polymerization using seed micelles as nuclei, as this process allows for the continuous growth of polymeric micelles with well-defined and controlled 1D nanostructures. Researchers have developed different techniques, including self-seeding and seeded growth, to form cylindrical block comicelles using the principle of living CDSA. This method is beneficial for the generation of complex nanostructures, such as pentablock comicelles or patchy comicelles, with very low polydispersity. This review sheds light on the living CDSA method, which can be used to precisely control length, shape, and branching during the self-assembly of amphiphilic block copolymers (BCPs) in the solution phase, leading to the creation of monodisperse 1D micelles with a crystalline core and solvated corona in a modular fashion. This paper also highlights the growth kinetics underlying the synthesis of cylindrical micelles via CDSA and its application in various fields, such as drug delivery, optoelectronics, and catalysis, which have been discovered recently. Lastly, the prospects of CDSA and its potential impact on materials science and nanotechnology are discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Besenius P, Portale G, Bomans PHH, Janssen HM, Palmans ARA, Meijer EW. Controlling the growth and shape of chiral supramolecular polymers in water. Proc Natl Acad Sci 2010;107:17888–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. De Greef TFA, Smulders MMJ, Wolffs M, Schenning APHJ, Sijbesma RP, Meijer EW. Supramolecular polymerization. Chem Rev 2009;109:5687–754.

    Article  PubMed  Google Scholar 

  3. Gröschel AH, Müller AHE. Self-assembly concepts for multicompartment nanostructures. Nanoscale. 2015;7:11841–76.

    Article  PubMed  Google Scholar 

  4. Shimomura M, Sawadaishi T. Bottom-up strategy of materials fabrication: a new trend in nanotechnology of soft materials. Curr Opin Colloid Interface Sci 2001;6:11–16.

    Article  CAS  Google Scholar 

  5. Kumar S, Bhushan P, Bhattacharya S. In: Bhattacharya S, Agarwal AK, Chanda N, Pandey A, Sen AK, editors. Environmental, chemical and medical sensors. Singapore: Springer; 2018. p.167–98. https://doi.org/10.1007/978-981-10-7751-7_8.

  6. Sikder A, Chakraborty S, Rajdev P, Dey P, Ghosh S. Molecular recognition driven bioinspired directional supramolecular assembly of amphiphilic (macro)molecules and proteins. Acc Chem Res 2021;54:2670–82.

    Article  CAS  PubMed  Google Scholar 

  7. Ghosh G, Dey P, Ghosh S. Controlled supramolecular polymerization of π-systems. Chem Commun 2020;56:6757–69.

    Article  CAS  Google Scholar 

  8. Li J, Fan Y, Gu Q, Zhou X, Sun H, Du J. Homopolymer self-assembly: principles, driving forces, and applications. Chem Mater 2023;35:10348–70.

    Article  CAS  Google Scholar 

  9. Gruschwitz FV, Klein T, Kuchenbrod MT, Moriyama N, Fujii S, Nischang I, et al. Kinetically controlling the length of self-assembled polymer nanofibers formed by intermolecular hydrogen bonds. ACS Macro Lett. 2021;10:837–43.

    Article  CAS  PubMed  Google Scholar 

  10. Peurifoy SR, Guzman CX, Braunschweig AB. Topology, assembly, and electronics: three pillars for designing supramolecular polymers with emergent optoelectronic behavior. Polym Chem 2015;6:5529–39.

    Article  CAS  Google Scholar 

  11. Bäumer N, Matern J, Fernández G. Recent progress and future challenges in the supramolecular polymerization of metal-containing monomers. Chem Sci 2021;12:12248–65.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Herbst F, Döhler D, Michael P, Binder WH. Self-healing polymers via supramolecular forces. Macromol Rapid Commun 2013;34:203–20.

    Article  CAS  PubMed  Google Scholar 

  13. Besenius P. Controlling supramolecular polymerization through multicomponent self-assembly. J Polym Sci Part Polym Chem 2017;55:34–78.

    Article  CAS  Google Scholar 

  14. Cordier P, Tournilhac F, Soulié-Ziakovic C, Leibler L. Self-healing and thermoreversible rubber from supramolecular assembly. Nature. 2008;451:977–80.

    Article  CAS  PubMed  Google Scholar 

  15. Yanagisawa Y, Nan Y, Okuro K, Aida T. Mechanically robust, readily repairable polymers via tailored noncovalent cross-linking. Science. 2018;359:72–6.

    Article  CAS  PubMed  Google Scholar 

  16. Grzelczak M, Liz-Marzán LM, Klajn R. Stimuli-responsive self-assembly of nanoparticles. Chem Soc Rev 2019;48:1342–61.

    Article  CAS  PubMed  Google Scholar 

  17. MacFarlane L, Zhao C, Cai J, Qiu H, Manners I. Emerging applications for living crystallization-driven self-assembly. Chem Sci 2021;12:4661–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hudson ZM, Boott CE, Robinson ME, Rupar PA, Winnik MA, Manners I. Tailored hierarchical micelle architectures using living crystallization-driven self-assembly in two dimensions. Nat Chem 2014;6:893–8.

    Article  CAS  PubMed  Google Scholar 

  19. Xu X-H, Jiang Z-Q, Xu L, Zhou L, Liu N, Wu Z-Q. Precise synthesis of π-conjugated block copolymers and polymerization-induced chiral self-assembly toward helical nanofibers with circularly polarized luminescence. ACS Appl Bio Mater 2021;4:7213–21.

    Article  CAS  PubMed  Google Scholar 

  20. Yu Q, Roberts MG, Pearce S, Oliver AM, Zhou H, Allen C, et al. Rodlike block copolymer micelles of controlled length in water designed for biomedical applications. Macromolecules. 2019;52:5231–44.

    Article  CAS  Google Scholar 

  21. Zhang W, Xu Y, Guo R, Zhuang P, Hong H, Tan H, et al. Theranostic bottle-brush polymers tailored for universal solid-tumor targeting. ACS Nano. 2024. https://doi.org/10.1021/acsnano.3c11755.

  22. Ezrahi S, Tuval E, Aserin A. Properties, main applications and perspectives of worm micelles. Adv Colloid Interface Sci 2006;128-130:77–102.

    Article  CAS  PubMed  Google Scholar 

  23. Hils C, Manners I, Schöbel J, Schmalz H. Patchy micelles with a crystalline core: self-assembly concepts, properties, and applications. Polymers. 2021;13:1481.

  24. Foster JC, Varlas S, Couturaud B, Coe Z, O’Reilly RK. Getting into shape: reflections on a new generation of cylindrical nanostructures’ self-assembly using polymer building blocks. J Am Chem Soc 2019;141:2742–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kim J-W, Suh K-D. Monodisperse polymer particles synthesized by seeded polymerization techniques. J Ind Eng Chem 2008;14:1–9.

    Article  CAS  Google Scholar 

  26. Suzuki N, Morishima Y, Arimori S, Endo T. Preparation of polystyrene nanoparticles by seed polymerization using amphiphilic random copolymer micelles as seeds. Polym J 2007;39:187–91.

    Article  CAS  Google Scholar 

  27. Petzetakis N, Dove AP, O’Reilly RK. Cylindrical micelles from the living crystallization-driven self-assembly of poly(lactide)-containing block copolymers. Chem Sci 2011;2:955–60.

    Article  CAS  Google Scholar 

  28. Patra SK, Ahmed R, Whittell GR, Lunn DJ, Dunphy EL, Winnik MA, et al. Cylindrical micelles of controlled length with a π-conjugated polythiophene core via crystallization-driven self-assembly. J Am Chem Soc 2011;133:8842–5.

    Article  CAS  PubMed  Google Scholar 

  29. Tian J, Zhang Y, Du L, He Y, Jin X-H, Pearce S, et al. Tailored self-assembled photocatalytic nanofibres for visible-light-driven hydrogen production. Nat Chem 2020;12:1150–6.

    Article  CAS  PubMed  Google Scholar 

  30. Xu J, Zhou H, Yu Q, Guerin G, Manners I, Winnik MA. Synergistic self-seeding in one-dimension: a route to patchy and block comicelles with uniform and controllable length. Chem Sci 2019;10:2280–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jarrett-Wilkins CN, Musgrave RA, Hailes RLN, Harniman RL, Faul CFJ, Manners I. Linear and branched fiber-like micelles from the crystallization-driven self-assembly of heterobimetallic block copolymer polyelectrolyte/surfactant complexes. Macromolecules. 2019;52:7289–7300.

    Article  CAS  Google Scholar 

  32. Qiu H, Gao Y, Du VA, Harniman R, Winnik MA, Manners I. Branched micelles by living crystallization-driven block copolymer self-assembly under kinetic control. J Am Chem Soc 2015;137:2375–85.

    Article  CAS  PubMed  Google Scholar 

  33. He Y, Eloi J-C, Harniman RL, Richardson RM, Whittell GR, Mathers RT, et al. Uniform biodegradable fiber-like micelles and block comicelles via “living” crystallization-driven self-assembly of poly(l-lactide) block copolymers: the importance of reducing unimer self-nucleation via hydrogen bond disruption. J Am Chem Soc 2019;141:19088–98.

    Article  CAS  PubMed  Google Scholar 

  34. Schmelz J, Pirner D, Krekhova M, Ruhland TM, Schmalz H. Interfacial activity of patchy worm-like micelles. Soft Matter. 2013;9:11173–7.

    Article  CAS  Google Scholar 

  35. Finnegan JR, Lunn DJ, Gould OEC, Hudson ZM, Whittell GR, Winnik MA, et al. Gradient crystallization-driven self-assembly: cylindrical micelles with “patchy” segmented coronas via the coassembly of linear and brush block copolymers. J Am Chem Soc 2014;136:13835–44.

    Article  CAS  PubMed  Google Scholar 

  36. Walther A, Drechsler M, Rosenfeldt S, Harnau L, Ballauff M, Abetz V, et al. Self-assembly of Janus cylinders into hierarchical superstructures. J Am Chem Soc 2009;131:4720–8.

    Article  CAS  PubMed  Google Scholar 

  37. Ruhland TM, Gröschel AH, Walther A, Müller AHE. Janus cylinders at liquid-liquid interfaces. Langmuir. 2011;27:9807–14.

    Article  CAS  PubMed  Google Scholar 

  38. Petzetakis N, Walker D, Dove AP, O’Reilly RK. Crystallization-driven sphere-to-rod transition of poly(lactide)-b-poly(acrylic acid) diblock copolymers: mechanism and kinetics. Soft Matter. 2012;8:7408–14.

    Article  CAS  Google Scholar 

  39. Israelachvili JN, Mitchell DJ, Ninham BW. Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc Faraday Trans 2 Mol Chem Phys 1976;72:1525–68.

    CAS  Google Scholar 

  40. Ahmed F, Discher DE. Self-porating polymersomes of PEG–PLA and PEG–PCL: hydrolysis-triggered controlled release vesicles. J Controlled Release. 2004;96:37–53.

    Article  CAS  Google Scholar 

  41. Antonietti M, Förster S. Vesicles and liposomes: a self-assembly principle beyond lipids. Adv Mater 2003;15:1323–33.

    Article  CAS  Google Scholar 

  42. Wang X, Guerin G, Wang H, Wang Y, Manners I, Winnik MA. Cylindrical block copolymer micelles and co-micelles of controlled length and architecture. Science. 2007;317:644–7.

    Article  CAS  PubMed  Google Scholar 

  43. Massey JA, Temple K, Cao L, Rharbi Y, Raez J, Winnik MA, et al. Self-assembly of organometallic block copolymers:  the role of crystallinity of the core-forming polyferrocene block in the micellar morphologies formed by poly(ferrocenylsilane-b-dimethylsiloxane) in n-alkane solvents. J Am Chem Soc 2000;122:11577–84.

    Article  CAS  Google Scholar 

  44. Sun L, Petzetakis N, Pitto-Barry A, Schiller TL, Kirby N, Keddie DJ, et al. Tuning the size of cylindrical micelles from poly(l-lactide)-b-poly(acrylic acid) diblock copolymers based on crystallization-driven self-assembly. Macromolecules. 2013;46:9074–82.

    Article  CAS  Google Scholar 

  45. Pitto-Barry A, Kirby N, Dove AP, O’Reilly RK. Expanding the scope of the crystallization-driven self-assembly of polylactide-containing polymers. Polym Chem 2014;5:1427–36.

    Article  CAS  Google Scholar 

  46. Hsiao M-S, Yusoff SFM, Winnik MA, Manners I. Crystallization-driven self-assembly of block copolymers with a short crystallizable core-forming segment: controlling micelle morphology through the influence of molar mass and solvent selectivity. Macromolecules. 2014;47:2361–72.

    Article  CAS  Google Scholar 

  47. Schram CJ, Beaudoin SP, Taylor LS. Impact of polymer conformation on the crystal growth inhibition of a poorly water-soluble drug in aqueous solution. Langmuir. 2015;31:171–9.

    Article  CAS  PubMed  Google Scholar 

  48. Song S, Jiang J, Nikbin E, Howe JY, Manners I, Winnik MA. The role of cooling rate in crystallization-driven block copolymer self-assembly. Chem Sci 2022;13:396–409.

    Article  CAS  PubMed  Google Scholar 

  49. Gilroy JB, Gädt T, Whittell GR, Chabanne L, Mitchels JM, Richardson RM, et al. Monodisperse cylindrical micelles by crystallization-driven living self-assembly. Nat Chem 2010;2:566–70.

    Article  CAS  PubMed  Google Scholar 

  50. Gilroy JB, Rupar PA, Whittell GR, Chabanne L, Terrill NJ, Winnik MA, et al. Probing the structure of the crystalline core of field-aligned, monodisperse, cylindrical polyisoprene-block-polyferrocenylsilane micelles in solution using synchrotron small- and wide-angle x-ray scattering. J Am Chem Soc 2011;133:17056–62.

    Article  CAS  PubMed  Google Scholar 

  51. Gwyther J, Gilroy JB, Rupar PA, Lunn DJ, Kynaston E, Patra SK, et al. Dimensional control of block copolymer nanofibers with a π-conjugated core: crystallization-driven solution self-assembly of amphiphilic poly(3-hexylthiophene)-b-poly(2-vinylpyridine). Chemistry 2013;19:9186–97.

    Article  CAS  PubMed  Google Scholar 

  52. Mohd Yusoff SF, Hsiao M-S, Schacher FH, Winnik MA, Manners I. Formation of lenticular platelet micelles via the interplay of crystallization and chain stretching: solution self-assembly of poly(ferrocenyldimethylsilane)-block-poly(2-vinylpyridine) with a crystallizable core-forming metalloblock. Macromolecules. 2012;45:3883–91.

    Article  CAS  Google Scholar 

  53. Gilroy JB, Lunn DJ, Patra SK, Whittell GR, Winnik MA, Manners I. Fiber-like micelles via the crystallization-driven solution self-assembly of poly(3-hexylthiophene)-block-poly(methyl methacrylate) copolymers. Macromolecules. 2012;45:5806–15.

    Article  CAS  Google Scholar 

  54. McGrath N, Schacher FH, Qiu H, Mann S, Winnik MA, Manners I. Synthesis and crystallization-driven solution self-assembly of polyferrocenylsilane diblock copolymers with polymethacrylate corona-forming blocks. Polym Chem 2014;5:1923–9.

    Article  CAS  Google Scholar 

  55. Nazemi A, Boott CE, Lunn DJ, Gwyther J, Hayward DW, Richardson RM, et al. Monodisperse cylindrical micelles and block comicelles of controlled length in aqueous media. J Am Chem Soc 2016;138:4484–93.

    Article  CAS  PubMed  Google Scholar 

  56. Presa Soto A, Gilroy JB, Winnik MA, Manners I. Pointed-oval-shaped micelles from crystalline-coil block copolymers by crystallization-driven living self-assembly. Angew Chem Int Ed 2010;49:8220–3.

    Article  CAS  Google Scholar 

  57. Rupar PA, Chabanne L, Winnik MA, Manners I. Non-centrosymmetric cylindrical micelles by unidirectional growth. Science. 2012;337:559–62.

    Article  CAS  PubMed  Google Scholar 

  58. Boott CE, Gwyther J, Harniman RL, Hayward DW, Manners I. Scalable and uniform 1D nanoparticles by synchronous polymerization, crystallization and self-assembly. Nat Chem 2017;9:785–92.

    Article  CAS  PubMed  Google Scholar 

  59. Fan B, Liu L, Li J-H, Ke X-X, Xu J-T, Du B-Y, et al. Crystallization-driven one-dimensional self-assembly of polyethylene-b-poly(tert-butylacrylate) diblock copolymers in DMF: effects of crystallization temperature and the corona-forming block. Soft Matter. 2016;12:67–76.

    Article  CAS  PubMed  Google Scholar 

  60. Boott CE, Leitao EM, Hayward DW, Laine RF, Mahou P, Guerin G, et al. Probing the growth kinetics for the formation of uniform 1D block copolymer nanoparticles by living crystallization-driven self-assembly. ACS Nano. 2018;12:8920–33.

    Article  CAS  PubMed  Google Scholar 

  61. Qian J, Lu Y, Chia A, Zhang M, Rupar PA, Gunari N, et al. Self-seeding in one dimension: a route to uniform fiber-like nanostructures from block copolymers with a crystallizable core-forming block. ACS Nano. 2013;7:3754–66.

    Article  CAS  PubMed  Google Scholar 

  62. Qian J, Guerin G, Lu Y, Cambridge G, Manners I, Winnik MA. Self-seeding in one dimension: an approach to control the length of fiberlike polyisoprene–polyferrocenylsilane block copolymer micelles. Angew Chem Int Ed 2011;50:1622–5.

    Article  CAS  Google Scholar 

  63. He W-N, Zhou B, Xu J-T, Du B-Y, Fan Z-Q. Two growth modes of semicrystalline cylindrical poly(ε-caprolactone)-b-poly(ethylene oxide) micelles. Macromolecules. 2012;45:9768–78.

    Article  CAS  Google Scholar 

  64. Mohd Yusoff SF, Gilroy JB, Cambridge G, Winnik MA, Manners I. End-to-end coupling and network formation behavior of cylindrical block copolymer micelles with a crystalline polyferrocenylsilane core. J Am Chem Soc 2011;133:11220–30.

    Article  PubMed  Google Scholar 

  65. Guerin G, Molev G, Pichugin D, Rupar PA, Qi F, Cruz M, et al. Effect of concentration on the dissolution of one-dimensional polymer crystals: a TEM and NMR study. Macromolecules. 2019;52:208–16.

    Article  CAS  Google Scholar 

  66. Guerin G, Molev G, Rupar PA, Manners I, Winnik MA. Understanding the dissolution and regrowth of core-crystalline block copolymer micelles: a scaling approach. Macromolecules. 2020;53:10198–211.

    Article  CAS  Google Scholar 

  67. Song S, Liu X, Nikbin E, Howe JY, Yu Q, Manners I, et al. Uniform 1D micelles and patchy & block comicelles via scalable, one-step crystallization-driven block copolymer self-assembly. J Am Chem Soc 2021;143:6266–80.

    Article  CAS  PubMed  Google Scholar 

  68. Lin G, Cai J, Sun Y, Cui Y, Liu Q, Manners I, et al. Capillary-bound dense micelle brush supports for continuous flow catalysis. Angew Chem Int Ed 2021;60:24637–43.

    Article  CAS  Google Scholar 

  69. Tao D, Wang Z, Huang X, Tian M, Lu G, Manners I, et al. Continuous and segmented semiconducting fiber-like nanostructures with spatially selective functionalization by living crystallization-driven self-assembly. Angew Chem Int Ed 2020;59:8232–9.

    Article  CAS  Google Scholar 

  70. Schöbel J, Burgard M, Hils C, Dersch R, Dulle M, Volk K, et al. Bottom-up meets top-down: patchy hybrid nonwovens as an efficient catalysis platform. Angew Chem Int Ed 2017;56:405–8.

    Article  Google Scholar 

  71. Jin X-H, Price MB, Finnegan JR, Boott CE, Richter JM, Rao A, et al. Long-range exciton transport in conjugated polymer nanofibers prepared by seeded growth. Science. 2018;360:897–900.

    Article  CAS  PubMed  Google Scholar 

  72. Ma C, Wang Z, Huang X, Lu G, Manners I, Winnik MA, et al. Water-dispersible, colloidally stable, surface-functionalizable uniform fiberlike micelles containing a π-conjugated oligo(p-phenylenevinylene) core of controlled length. Macromolecules. 2020;53:8009–19.

    Article  CAS  Google Scholar 

  73. Parkin HC, Garcia-Hernandez JD, Street STG, Hof R, Manners I. Uniform, length-tunable antibacterial 1D diblock copolymer nanofibers. Polym Chem 2022;13:2941–9.

    Article  CAS  Google Scholar 

  74. Yu Q, Roberts MG, Houdaihed L, Liu Y, Ho K, Walker G, et al. Investigating the influence of block copolymer micelle length on cellular uptake and penetration in a multicellular tumor spheroid model. Nanoscale. 2021;13:280–91.

    Article  CAS  PubMed  Google Scholar 

  75. Gao Y, Qiu H, Zhou H, Li X, Harniman R, Winnik MA, et al. Crystallization-driven solution self-assembly of block copolymers with a photocleavable junction. J Am Chem Soc 2015;137:2203–6.

    Article  CAS  PubMed  Google Scholar 

  76. Street STG, He Y, Harniman RL, Garcia-Hernandez JD, Manners I. Precision polymer nanofibers with a responsive polyelectrolyte corona designed as a modular, functionalizable nanomedicine platform. Polym Chem 2022;13:3009–25.

    Article  CAS  Google Scholar 

  77. Zardad A-Z, Choonara YE, Du Toit LC, Kumar P, Mabrouk M, Kondiah PP, et al. A review of thermo- and ultrasound-responsive polymeric systems for delivery of chemotherapeutic agents. Polymers. 2016;8:359.

  78. Chu S, Shi X, Tian Y, Gao F. pH-responsive polymer nanomaterials for tumor therapy. Front Oncol. 2022;12:855019.

  79. Ponomarenko AT, Tameev AR, Shevchenko VG. Action of mechanical forces on polymerization and polymers. Polymers. 2022;14:604.

  80. Helmers I, Ghosh G, Albuquerque RQ, Fernández G. Pathway and length control of supramolecular polymers in aqueous media via a hydrogen bonding lock. Angew Chem Int Ed 2021;60:4368–76.

    Article  CAS  Google Scholar 

  81. Choisnet T, Canevet D, Sallé M, Nicol E, Niepceron F, Jestin J, et al. Robust supramolecular nanocylinders of naphthalene diimide in water. Chem Commun 2019;55:9519–22.

    Article  CAS  Google Scholar 

  82. Gruschwitz FV, Fu M-C, Klein T, Takahashi R, Higashihara T, Hoeppener S, et al. Unraveling decisive structural parameters for the self-assembly of supramolecular polymer bottlebrushes based on benzene trisureas. Macromolecules. 2020;53:7552–60.

    Article  CAS  Google Scholar 

  83. Tao D, Feng C, Cui Y, Yang X, Manners I, Winnik MA, et al. Monodisperse fiber-like micelles of controlled length and composition with an oligo(p-phenylenevinylene) core via “living” crystallization-driven self-assembly. J Am Chem Soc 2017;139:7136–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

SM and PD thank SERB, India, for funding through Start-up research grant (SRG) (File No—SRG/2022/000195) and the Department of Chemistry, Visva-Bharati for providing research facilities. GG thanks the Ramanujan Fellowship (File no. RJF/2022/000002), SERB, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pradip Dey or Goutam Ghosh.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahapatra, S., Dey, P. & Ghosh, G. Controlled synthesis of cylindrical micelles via crystallization-driven self-assembly (CDSA) and applications. Polym J (2024). https://doi.org/10.1038/s41428-024-00931-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41428-024-00931-8

Search

Quick links