Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Focus Review
  • Published:

Supramolecular methodologies for the assembly of optical microresonators from functional organic materials

Abstract

An optical microresonator is a micrometer-scale object that can confine light inside its body via total internal reflection at the boundary. In addition to well-established applications, including laser oscillators, optical sensors, and quantum memory, optical resonators have attracted renewed attention in chemistry and biology as minute and highly sensitive sensors that work in the environment and inside biological tissues and cells without any connected wires. Optical resonators should be functional for facilitating molecular interactions and biological compatibility, which is, however, challenging with conventional materials and processing techniques. In contrast, the authors have been tackling this issue by using supramolecular chemistry, which enables the assembly of optical resonators from chemically and biologically functional organic materials in solution. This article reviews our recent progress on the methodologies for making organic optical resonators and their emergent optical properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Oraevsky AN. Whispering-gallery waves. Quantum Electron. 2002;32:377–400.

    Article  CAS  Google Scholar 

  2. Siegman AE. Laser beams and resonators: the 1960s. IEEE J Sel Top Quantum Electron. 2000;6:1380–88.

    Article  CAS  Google Scholar 

  3. Siegman AE. Laser beams and resonators: beyond the 1960s. IEEE J Sel Top Quantum Electron. 2000;6:1389–99.

    Article  CAS  Google Scholar 

  4. He L, Özdemir ŞK, Yang L. Whispering gallery microcavity lasers. Laser Photon Rev. 2013;7:60–82.

    Article  CAS  Google Scholar 

  5. Vollmer F, Yang L. Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices. Nanophotonics. 2012;1:267–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jiang X, Qavi AJ, Huang SH, Yang L. Whispering-gallery sensors. Matter. 2020;3:371–92.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Frustaci S, Vollmer F. Whispering-gallery mode (WGM) sensors: review of established and WGM-based techniques to study protein conformational dynamics. Curr Opin Chem Biol. 2019;51:66–73.

    Article  CAS  PubMed  Google Scholar 

  8. Fikouras AH, Schubert M, Karl M, Kumar JD, Powis SJ, Di Falco A, et al. Non-obstructive intracellular nanolasers. Nat Commun. 2018;9:4817.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Martino N, Kwok SJJ, Liapis AC, Forward S, Jang H, Kim HM, et al. Wavelength-encoded laser particles for massively multiplexed cell tagging. Nat Photonics. 2019;13:720–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schubert M, Woolfson L, Barnard IRM, Dorward AM, Casement B, Morton A, et al. Monitoring contractility in cardiac tissue with cellular resolution using biointegrated microlasers. Nat Photonics. 2020;14:452–58.

    Article  CAS  Google Scholar 

  11. Venkatakrishnarao D, Chandrasekar R. Engineering the self‐assembly of DCM dyes into whispering‐gallery‐mode μ‐hemispheres and Fabry–Pèrot‐type μ‐rods for visible–NIR (600–875 nm) range optical microcavities. Adv Opt Mater. 2015;4:112–19.

    Article  Google Scholar 

  12. Venkatakrishnarao D, Mamonov EA, Murzina TV, Chandrasekar R. Advanced organic and polymer whispering‐gallery‐mode microresonators for enhanced nonlinear optical light. Adv Opt Mater. 2018;6:1800343.

    Article  Google Scholar 

  13. Yamamoto Y, Yamagishi H, Huang JS, Lorke A. Molecular and supramolecular designs of organic/polymeric micro-photoemitters for advanced optical and laser applications. Acc Chem Res. 2023;56:1469–81.

    Article  CAS  PubMed  Google Scholar 

  14. Yamamoto Y, Kushida S, Okada D, Oki O, Yamagishi H. Hendra self-assembled π-conjugated organic/polymeric microresonators and microlasers. Bull Chem Soc Jpn. 2023;96:702–10.

    Article  CAS  Google Scholar 

  15. Yamamoto Y. Spherical resonators from π-conjugated polymers. Polym J. 2016;48:1045–50.

    Article  CAS  Google Scholar 

  16. Tanji N, Yamagishi H, Fujita K, Yamamoto Y. Nanoporous fluorescent microresonators for non-wired sensing of volatile organic compounds down to the ppb level. ACS Appl Polym Mater. 2022;4:1065–70.

    Article  CAS  Google Scholar 

  17. Oki O, Kulkarni C, Yamagishi H, Meskers SCJ, Lin ZH, Huang JS, et al. Robust angular anisotropy of circularly polarized luminescence from a single twisted-bipolar polymeric microsphere. J Am Chem Soc 2021;143:8772–79.

    Article  CAS  PubMed  Google Scholar 

  18. Qiagedeer A, Yamagishi H, Hayashi S, Yamamoto Y. Polymer optical microcavity sensor for volatile organic compounds with distinct selectivity toward aromatic hydrocarbons. ACS Omega. 2021;6:21066–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ihara Y, Yamagishi H, Lin C, Jhu CH, Tsai MC, Horie M, et al. Hydrothermal crosslinking of poly(fluorenylamine) with styryl side chains to produce insoluble fluorescent microparticles. Polym J. 2023;55:547–53.

    Article  CAS  Google Scholar 

  20. Ihara Y, Yamagishi H, Naito M, Yamamoto Y. Machine learning of organic solvents reveals an extraordinary axis in Hansen space as indicator of spherical precipitation of polymers. Aggregate. 2023;4:e365.

    Article  Google Scholar 

  21. Iwai K, Yamagishi H, Herzberger C, Sato Y, Tsuji H, Albrecht K, et al. Single-crystalline optical microcavities from luminescent dendrimers. Angew Chem Int Ed. 2020;59:12674–79.

    Article  CAS  Google Scholar 

  22. Heah WY, Yamagishi H, Fujita K, Sumitani M, Mikami Y, Yoshioka H, et al. Silk fibroin microspheres as optical resonators for wide-range humidity sensing and biodegradable lasers. Mater Chem Front. 2021;5:5653–57.

    Article  CAS  Google Scholar 

  23. Zhao S, Yamagishi H, Norikane Y, Hayashi S, Yamamoto Y. Optical control of aggregation‐induced emission shift by photoisomerizable precipitant in a liquid droplet microresonator. Adv Opt Mater. 2022;11:2202134.

    Article  Google Scholar 

  24. Suharman, Heah WY, Yamagishi H, Yamamoto Y. Poly(lactic acid) stereocomplex microspheres as thermally tolerant optical resonators. Nanoscale. 2023;15:19062–68.

    Article  CAS  PubMed  Google Scholar 

  25. Qiagedeer A, Yamagishi H, Sakamoto M, Hasebe H, Ishiwari F, Fukushima T, et al. A highly sensitive humidity sensor based on an aggregation-induced emission luminogen-appended hygroscopic polymer microresonator. Mater Chem Front. 2021;5:799–803.

    Article  CAS  Google Scholar 

  26. Yamagishi H, Fujita K, Miyagawa J, Mikami Y, Yoshioka H, Oki Y, et al. Pneumatically tunable droplet microlaser. Laser Photon Rev. 2023;17:2200874.

    Article  Google Scholar 

  27. Takeuchi A, Heah WY, Yamamoto Y, Yamagishi H. Degradable optical resonators as in situ microprobes for microscopy-based observation of enzymatic hydrolysis. Chem Commun. 2023;59:1477–80.

    Article  CAS  Google Scholar 

  28. Tanji N, Miyagawa J, Yamamoto Y, Nakashima T, Yamagishi H. Inclusion of dye in cyclodextrin for isotropically radiative robust droplet laser toward lens-free remote optical detection. Chem Lett. 2023;52:696–99.

    Article  CAS  Google Scholar 

  29. Vinod Kumar A, Rohullah M, Chosenyah M, Ravi J, Venkataramudu U, Chandrasekar R. Amphibian-like flexible organic crystal optical fibers for underwater/air micro-precision lighting and sensing. Angew Chem Int Ed. 2023;62:e202300046.

    Article  CAS  Google Scholar 

Download references

Funding

JSPS, Grant-in-Aid for Early-Career Scientists JP22K14656. JST, ACT-X JPMJAX201J. The New Energy and Industrial Technology Development Organization (NEDO). Kato Memorial Bioscience Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Yamagishi.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamagishi, H. Supramolecular methodologies for the assembly of optical microresonators from functional organic materials. Polym J (2024). https://doi.org/10.1038/s41428-024-00925-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41428-024-00925-6

Search

Quick links