Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Focus Review
  • Published:

Synthesis, characterization, degradation and applications of vinyl polyperoxides

Abstract

Polymeric peroxide is an equimolar alternating copolymer formed by the reaction of a monomer with molecular oxygen (O2). Various polyperoxides have been successfully synthesized using different techniques, such as free radical polymerization, condensation polymerization, and insertion polymerization in the solid state. A wide variety of physical and chemical characteristics are displayed by these polyperoxides, making them attractive candidates for various applications. Due to their high exothermal degrading behavior and autocombustibility, polyperoxides are a viable alternative to fuels derived from petroleum. Additionally, polyperoxides have a wide range of applications, such as free radical initiators, curatives, biocompatible drug carriers, coating materials, dismantlable adhesives, and molding precursors. In this focused review, we report on recent efforts in developing vinyl homo- and copolyperoxides, their physicochemical behaviors, and various applications. Finally, the existing opportunities, possible challenges, and some viewpoints on future directions in vinyl polyperoxide research are highlighted.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Brodie BC. Ueber die bildung der hyperoxyde organischer säureradicale. Justus Liebigs Ann Chem. 1858;108:79–83. https://doi.org/10.1002/jlac.18581080117

    Article  Google Scholar 

  2. Staudinger H. Erfahrungen über einige explosionen. Angew Chem. 1922;35:657–9. https://doi.org/10.1002/ange.19220359302

    Article  CAS  ADS  Google Scholar 

  3. Samanta P, Mete S, Pal S, De P. Polymeric peroxides: synthesis, characterization, degradation and applications. J Macromol Sci Part A. 2022;59:711–30.

    Article  CAS  Google Scholar 

  4. Kishore K, Mukundan T. Poly(styrene peroxide): an auto-combustible polymer fuel. Nature. 1986;324:130–1.

    Article  CAS  ADS  Google Scholar 

  5. Sato E, Tamura H, Matsumoto A. Cohesive force change induced by polyperoxide degradation for application to dismantlable adhesion. ACS Appl Mater Interfaces. 2010;2:2594–601.

    Article  CAS  PubMed  Google Scholar 

  6. Kurochkin SA, Silant′ev MA, Perepelitsyna EO, Grachev VP. Molecular oxygen as a regulator of primary chain length of branched polymers formed in 3D radical polymerization. Oxidative polymerization of styrene. Polymer. 2013;54:31–42.

    Article  CAS  Google Scholar 

  7. Subramanian K, Kishore K. Application of polystyrene peroxide as a curative in coating and molding compositions. Eur Polym J. 1997;33:1365–7.

    Article  CAS  Google Scholar 

  8. Fujioka T, Taketani S, Nagasaki T, Matsumoto A. Self-assembly and cellular uptake of degradable and water-soluble polyperoxides. Bioconjugate Chem. 2009;20:1879–87.

    Article  CAS  Google Scholar 

  9. Murthy KS, Kishore K, Mohan VK. Vinyl monomer based polyperoxides as potential initiators for radical polymerization: an exploratory investigation with poly(α-methylstyrene peroxide). Macromolecules. 1994;27:7109–14.

    Article  CAS  ADS  Google Scholar 

  10. Nanda AK, Kishore K. Autocatalytic oxidative polymerization of indene by cobalt porphyrin complex and kinetic investigation of the polymerization of styrene. Macromolecules. 2001;34:1600–5.

    Article  CAS  ADS  Google Scholar 

  11. Pal S, Ghorai PK, De P. Oxidative polymerization of para-substituted styrene derivatives: synthesis, characterization and kinetics study. Polymer. 2012;53:3687–94.

    Article  CAS  Google Scholar 

  12. Pal S, Ghorai PK, De P. Kinetic and thermochemical study of the oxidative polymerizations of α-substituted styrenes. Polym Bull. 2012;69:149–61.

    Article  CAS  Google Scholar 

  13. De P, Sathyanarayana DN. Para-substituted poly(styrene peroxide)s: synthesis, characterization, thermal reactivities and chain dynamics studies in solution. Macromol Chem Phys. 2002;203:420–6.

    Article  CAS  Google Scholar 

  14. De P, Sathyanarayana DN, Sadasivamurthy P. Sridhar S. Synthesis, structural characterization, thermal studies and chain dynamics of poly(methacrylonitrile peroxide) by NMR spectroscopy. Polymer. 2001;42:8587–93.

    Article  CAS  Google Scholar 

  15. De P. Comparative study of the chain dynamics of polymers containing peroxy linkages in the backbone. Polym Prepr. 2005;46:852–3.

    CAS  Google Scholar 

  16. Pal S, Dhawan A, De P. Ortho- and meta-substituted polystyrene polyperoxides: synthesis, characterization and thermal decomposition studies. Polym Int. 2014;63:746–51.

    Article  CAS  Google Scholar 

  17. Mete S, Choudhury N, De P. Degradable alternating polyperoxides from poly(ethylene glycol) substituted styrenic monomers with water solubility and thermoresponsiveness. J Polym Sci Part A Polym Chem. 2018;56:2030–8.

    Article  CAS  ADS  Google Scholar 

  18. Pal S, De P. Poly(9-vinyl anthracene peroxide): synthesis, characterization, degradation and application as macroinitiator for the polymerization of methyl methacrylate. Polymer. 2013;54:2652–7.

    Article  CAS  Google Scholar 

  19. Mete S, Mukherjee P, Maiti B, Pal S, Ghorai PK, De P. Degradable crystalline polyperoxides from fatty acid containing styrenic monomers. Macromolecules. 2018;51:8912–21.

    Article  CAS  ADS  Google Scholar 

  20. De P, Sathyanarayana DN. Synthesis of poly(1,3-diisopropenylbenzene peroxide). Indian J Chem. 2001;40A:1009–11.

    CAS  Google Scholar 

  21. Razuvaev GA, Boguslavskaya LS, Barabashina RA. Synthesis and properties of polymeric peroxides of acrylic acid phenyl esters. Zh Organicheskoi Khimii. 1972;8:1601–8.

    CAS  Google Scholar 

  22. De P, Sathyanarayana DN, Sadasivamurthy P. Sridhar S. Synthesis, spectral characterization and thermochemical studies on poly(phenyl methacrylate peroxide). J Appl Polym Sci. 2003;88:2364–8.

    Article  CAS  Google Scholar 

  23. Pal S, De P. Water soluble polyperoxides from 2-(2-methoxyethoxy)ethyl methacrylate: influence of molecular oxygen on thermoresponsive properties and thermal degradation. Chem Commun. 2012;48:4229–31.

    Article  CAS  Google Scholar 

  24. Pal S, Das A, Maiti S, De P. Synthesis and characterization of a biodegradable polymer prepared via radical copolymerization of 2-(acetoacetoxy)ethyl methacrylate and molecular oxygen. Polym Chem. 2012;3:182–9.

    Article  CAS  Google Scholar 

  25. Pal S, Banoth B, Rahithya G, Dhawan A, De P. Copolyperoxides of 2-(acetoacetoxy)ethyl methacrylate with methyl methacrylate and styrene; synthesis, characterization, thermal analysis, and reactivity ratios. Polymer. 2012;53:2583–90.

    Article  CAS  Google Scholar 

  26. Mete S, Mukherjee P, Goswami KG, Ghorai PK, De P. Polyperoxides from cyclic monomers: synthesis, characterization and high pressure kinetics study. ACS Appl Polym Mater. 2020;2:4109–17.

    Article  CAS  Google Scholar 

  27. Khan EH, Pal S, De P. N-Hydroxyphthalimide-mediated oxidation of styrene by molecular oxygen. Macromol Chem Phys. 2013;214:2181–8.

    Article  CAS  Google Scholar 

  28. Mayo FR, Miller AA, Russell GA. The oxidation of unsaturated compounds. IX. The effects of structure on the rates and products of oxidation of unsaturated compounds. J Am Chem Soc. 1958;80:2500–7.

    Article  CAS  Google Scholar 

  29. Jayanthi S, Kishore K. Oxidative copolymerization: microstructure analysis of the terpolymer of styrene, methyl methacrylate, and oxygen. Macromolecules. 1993;26:1985–9.

    Article  CAS  ADS  Google Scholar 

  30. De P, Sathyanarayana DN. Polymerization of vinyl acetate with styrene and α-methylstyrene under high oxygen pressure. Indian J Chem. 2001;40A:1282–7.

    CAS  Google Scholar 

  31. De P, Sathyanarayana DN. Reactivity ratios for the terpolymerization of methyl methacrylate, vinyl acetate and molecular oxygen. J Polym Sci Part A Polym Chem. 2002;40:564–72.

    Article  CAS  ADS  Google Scholar 

  32. De P, Sathyanarayana DN. High-pressure kinetics of oxidative copolymerization of styrene with α-methylstyrene. Macromol Chem Phys. 2002;203:2218–24.

    Article  CAS  Google Scholar 

  33. Pal S, Vaish A, De P. The effect of different catalysts on the monomer reactivity ratios in oxidative copolymerization of styrene and α-methylstyrene. Polym Int. 2015;64:541–6.

    Article  CAS  Google Scholar 

  34. De P, Sathyanarayana DN. Synthesis and characterization of copolyperoxides of indene with styrene, α-methylstyrene and α-phenylstyrene. J Polym Sci Part B Polym Phys. 2002;40:2004–17.

    Article  CAS  ADS  Google Scholar 

  35. De P, Sathyanarayana DN, Sadasivamurthy P, Sridhar S. Reactivity ratios for the oxidative copolymerizations of indene with methyl methacrylate and methacrylonitrile. Eur Polym J. 2002;38:847–55.

    Article  CAS  Google Scholar 

  36. De P, Sathyanarayana DN. Determination of the reactivity ratios for the oxidative copolymerizations of indene with methyl, ethyl and butyl acrylates. Macromol Chem Phys. 2002;203:573–9.

    Article  CAS  Google Scholar 

  37. De P, Sathyanarayana DN. Oxidative copolymerization of indene with p-tert-butylstyrene: synthesis, characterization, thermal analysis and reactivity ratios. J Polym Sci Part A Polym Chem. 2002;40:9–18.

    Article  CAS  ADS  Google Scholar 

  38. De P, Sathyanarayana DN. Free-radical oxidative copolymerization of indene with vinyl acetate and isopropenyl acetate: synthesis and characterization. J Appl Polym Sci. 2002;86:639–46.

    Article  CAS  Google Scholar 

  39. Mete S, Goswami KG, De P. Composition dependent crystallization behaviour of copolyperoxides from methyl methacrylate and 4-vinylbenzyl stearate. J Polym Sci. 2020;58:766–78.

    Article  CAS  Google Scholar 

  40. Subramanian K. Formation, degradation, and applications of polyperoxides. J Macromol Sci Part C Polym Rev. 2003;43:323–83.

    Article  Google Scholar 

  41. Nanda AK, Ganesh K, Kishore K, Surianarayan M. End-group analysis of vinyl polyperoxides by MALDI-TOF-MS, FT-IR technique and thermochemical calculations. Polymer. 2000;41:9063–72.

    Article  CAS  Google Scholar 

  42. Cais RE, Bovey FA. Carbon-13 nuclear magnetic resonance study of the microstructure and molecular dynamics of poly(styrene peroxide). Macromolecules. 1977;10:169–78.

    Article  CAS  ADS  Google Scholar 

  43. Sato E, Matsumoto A. Facile synthesis of functional polyperoxides by radical alternating copolymerization of 1,3-dienes with oxygen. Chem Rec. 2009;9:247–57.

    Article  CAS  PubMed  Google Scholar 

  44. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  45. De P, Chattopadhyay S, Giridhar M, Sathyanarayana DN. Kinetics of thermal degradation of vinyl polyperoxides in solution. Polym Degrad Stab. 2002;76:161–70.

    Article  CAS  Google Scholar 

  46. Sivalingam G, De P, Karthik R, Giridhar M. Thermal degradation kinetics of vinyl polyperoxide copolymers. Polym Degrad Stab. 2004;84:173–9.

    Article  CAS  Google Scholar 

  47. De P, Chattopadhyay S, Giridhar M, Sathyanarayana DN. Thermal degradation studies of para-substituted poly(styrene peroxide)s. Polym. Degrad Stab. 2002;76:511–4.

    Article  CAS  Google Scholar 

  48. De P, Chattopadhyay S, Giridhar M, Sathyanarayana DN. Thermal degradation kinetics of para-substituted poly(styrene peroxide)s in solution. J Appl Polym Sci. 2002;86:957–61.

    Article  CAS  Google Scholar 

  49. Jose NR-L, David JL, Josefa H-R, Alexander NPH, Francisco G-C, Roger NFT. Mechanism of reaction of hydrogen peroxide with horseradish peroxidase: identification of intermediates in the catalytic cycle. J Am Chem Soc. 2001;123:11838–47.

    Article  Google Scholar 

  50. Pal S, Das A, Maiti S, De P. Biodegradation and in vitro biocompatibility of polyperoxides: alternating copolymers of vinyl monomers and molecular oxygen. J Biomat Sci Polym Ed. 2012;23:2105–17.

    Article  CAS  Google Scholar 

  51. Silant’ev MA, Perepelitsina EO, Grachev VP, Kurochkin SA. Irregular polystyrene peroxides – a promising macroinitiators synthesized by radical polymerization under oxygen inflow. Eur Polym J. 2017;89:67–77.

    Article  Google Scholar 

  52. Sato E, Hagihara T, Matsumoto A. Facile synthesis of main-chain degradable block copolymers for performance enhanced dismantlable adhesion. ACS Appl Mater Interfaces. 2012;4:2057–64.

    Article  CAS  PubMed  Google Scholar 

  53. Mukundan T, Annakutty KS, Kishore K. A novel solid fuel system based on an auto-pyrolysable polymer. Fuel. 1993;72:688–9.

    Article  CAS  Google Scholar 

  54. Sato E, Omori C, Yuri M, Koda Y, Horibe H. Thermal latent reductants for controlled degradation of polyperoxides and their application to high performance dismantlable adhesives. ACS Appl Polym Mater. 2019;1:2140–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Ms. Pampa Chawdhury for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priyadarsi De.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samanta, P., Mete, S., Pal, S. et al. Synthesis, characterization, degradation and applications of vinyl polyperoxides. Polym J 56, 283–296 (2024). https://doi.org/10.1038/s41428-023-00860-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-023-00860-y

Search

Quick links