Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genetics and Genomics

Single-cell sequencing of PIT1-positive pituitary adenoma highlights the pro-tumour microenvironment mediated by IFN-γ-induced tumour-associated fibroblasts remodelling

Abstract

Background

PIT1-positive pituitary adenoma (PIT1-PA) is one of the most important lineages of pituitary adenoma (PA), which causes systematic endocrine disorders and a worse prognosis. Tumour-associated fibroblast (TAF) is a crucial stroma cell type in the tumour microenvironment (TME). However, cellular and functional heterogeneity of TAF and immune cells in PIT1-PA have not been fully investigated.

Methods

By single-cell RNA sequencing of four PIT1-PAs and further analyses, we characterised the molecular and functional profiles of 28 different cell subtypes.

Results

PA stem cells in PIT1/SF1-positve PA were in a hybrid epithelial/mesenchymal state, and differentiated along the PIT1- and SF- dependent branches. C1Q was overwhelmingly expressed in tumour-associated macrophages, indicating its pro-tumoral functionality. PIT1-PA progression was characterised by lower cell–cell communication strength and higher cell adhesion-associated signals, indicating the immunosuppressive but pro-invasive microenvironment. IFN-γ signal repressed functional remodelling of myofibroblastic TAF (mTAF) towards inflammatory TAF/antigen-presenting TAF. IFN-γ inhibited mTAF phenotypes and N-cadherin expression through STAT3 signal axis. CDH2 knockdown in TAFs abrogated their pro-tumour function in PAs.

Conclusions

Our study builds up a cellular landscape of PIT1-PA TME and highlights anti-tumour function of IFN-γ mediated TAF remodelling, which benefits clinical treatments and drug development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cell-type identification in PIT1-PA and subtype-specific oncogene analyses for epithelial.
Fig. 2: Diversity of hybrid epithelial/mesenchymal state of PIT1-PA tumour stem cells.
Fig. 3: Pseudotime differentiation trajectories of plurihormonal PIT1/SF1-positive PA.
Fig. 4: Molecular and functional heterogeneity of myeloid cells in PIT1-Pas.
Fig. 5: Characteristics of tumour-infiltrating lymphocytes.
Fig. 6: Cellular and functional remodelling of TAFs in PIT1-Pas.
Fig. 7: Cell–cell communication network and progression-associated alterations among TME in PIT1-Pas.
Fig. 8: IFN-γ inhibited PA progression via CDH2 suppression in TAFs.

Similar content being viewed by others

Data availability

The single-cell RNA sequencing data generated in this paper are available in National Genomics Data Center by accession no. HRA003110 (https://ngdc.cncb.ac.cn/gsa-human/).

Code availability

R scripts used in this study to analyse data and generate figures can be found in Github (https://github.com/lvliang418/single-cell-RNAseq-for-PIT1-PA).

References

  1. Fernandez A, Karavitaki N, Wass JA. Prevalence of pituitary adenomas: a community-based, cross-sectional study in Banbury (Oxfordshire, UK). Clin Endocrinol. 2010;72:377–82.

    Article  Google Scholar 

  2. Asa SL, Mete O, Perry A, Osamura RY. Overview of the 2022 WHO Classification of Pituitary Tumors. Endocr Pathol. 2022;33:6–26.

    Article  CAS  PubMed  Google Scholar 

  3. Asa SL, Casar-Borota O, Chanson P, Delgrange E, Earls P, Ezzat S, et al. From pituitary adenoma to pituitary neuroendocrine tumor (PitNET): an International Pituitary Pathology Club proposal. Endocr Relat Cancer. 2017;24:C5–C8.

    Article  CAS  PubMed  Google Scholar 

  4. Lopes MBS. The 2017 World Health Organization classification of tumors of the pituitary gland: a summary. Acta Neuropathol. 2017;134:521–35.

    Article  CAS  PubMed  Google Scholar 

  5. Bollerslev J, Heck A, Olarescu NC. MANAGEMENT OF ENDOCRINE DISEASE: Individualized Management of Acromegaly. Eur J Endocrinol. 2019;181:R57-r71.

  6. Tampourlou M, Trifanescu R, Paluzzi A, Ahmed SK, Karavitaki N. THERAPY OF ENDOCRINE DISEASE: Surgery in microprolactinomas: effectiveness and risks based on contemporary literature. Eur J Endocrinol. 2016;175:R89–96.

    Article  CAS  PubMed  Google Scholar 

  7. Trouillas J, Burman P, McCormack A, Petersenn S, Popovic V, Dekkers O, et al. Aggressive pituitary tumours and carcinomas: two sides of the same coin? Eur J Endocrinol. 2018;178:C7–C9.

    Article  CAS  PubMed  Google Scholar 

  8. Di Ieva A, Rotondo F, Syro LV, Cusimano MD, Kovacs K. Aggressive pituitary adenomas-diagnosis and emerging treatments. Nat Rev Endocrinol. 2014;10:423–35.

    Article  PubMed  Google Scholar 

  9. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.

    Article  CAS  PubMed  Google Scholar 

  10. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  11. Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 2005;121:335–48.

    Article  CAS  PubMed  Google Scholar 

  12. Lv L, Zhang S, Hu Y, Zhou P, Gao L, Wang M, et al. Invasive pituitary adenoma-derived tumor-associated fibroblasts promote tumor progression both in vitro and in vivo. Exp Clin Endocrinol Diabetes. 2017;126:213–21.

    Article  PubMed  Google Scholar 

  13. Özdemir BC, Pentcheva-Hoang T, Carstens JL, Zheng X, Wu CC, Simpson TR, et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell. 2014;25:719–34.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chen Z, Zhou L, Liu L, Hou Y, Xiong M, Yang Y, et al. Single-cell RNA sequencing highlights the role of inflammatory cancer-associated fibroblasts in bladder urothelial carcinoma. Nat Commun. 2020;11:5077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Biffi G, Oni TE, Spielman B, Hao Y, Elyada E, Park Y, et al. IL1-induced JAK/STAT signaling is antagonized by TGFβ to shape CAF heterogeneity in pancreatic ductal adenocarcinoma. Cancer Discov. 2019;9:282–301.

    Article  PubMed  Google Scholar 

  16. Elyada E, Bolisetty M, Laise P, Flynn WF, Courtois ET, Burkhart RA, et al. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discov. 2019;9:1102–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Guo W, Wang D, Wang S, Shan Y, Liu C, Gu J. scCancer: a package for automated processing of single-cell RNA-seq data in cancer. Brief Bioinforma. 2021;22:1–9.

  18. Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinforma. 2013;14:7.

    Article  Google Scholar 

  19. Zhang S, Cui Y, Ma X, Yong J, Yan L, Yang M, et al. Single-cell transcriptomics identifies divergent developmental lineage trajectories during human pituitary development. Nat Commun. 2020;11:5275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Murray PJ. Macrophage polarization. Annu Rev Physiol. 2017;79:541–66.

    Article  CAS  PubMed  Google Scholar 

  21. Qiu X, Mao Q, Tang Y, Wang L, Chawla R, Pliner HA, et al. Reversed graph embedding resolves complex single-cell trajectories. Nat Methods. 2017;14:979–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. La Manno G, Soldatov R, Zeisel A, Braun E, Hochgerner H, Petukhov V, et al. RNA velocity of single cells. Nature. 2018;560:494–8.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinforma. 2008;9:559.

    Article  Google Scholar 

  24. Aibar S, González-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods. 2017;14:1083–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan C-H, et al. Inference and analysis of cell-cell communication using CellChat. Nat Commun. 2021;12:1088. https://doi.org/10.1038/s41467-021-21246-9.

  26. Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics. 2012;28:882–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Marques P, Barry S, Carlsen E, Collier D, Ronaldson A, Awad S, et al. Pituitary tumour fibroblast-derived cytokines influence tumour aggressiveness. Endocr Relat Cancer. 2019;26:853–65.

    Article  CAS  PubMed  Google Scholar 

  28. Bromberg JF, Wrzeszczynska MH, Devgan G, Zhao Y, Pestell RG, Albanese C, et al. Stat3 as an oncogene. Cell. 1999;98:295–303.

    Article  CAS  PubMed  Google Scholar 

  29. Conway JR, Lex A, Gehlenborg N. UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics. 2017;33:2938–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jongsma MLM, Neefjes J, Spaapen RM. Playing hide and seek: tumor cells in control of MHC class I antigen presentation. Mol Immunol. 2021;136:36–44.

    Article  CAS  PubMed  Google Scholar 

  31. Würth R, Thellung S, Corsaro A, Barbieri F, Florio T. Experimental evidence and clinical implications of pituitary adenoma stem cells. Front Endocrinol (Lausanne). 2020;11:54.

    Article  PubMed  Google Scholar 

  32. Lu JQ, Adam B, Jack AS, Lam A, Broad RW, Chik CL. Immune cell infiltrates in pituitary adenomas: more macrophages in larger adenomas and more T cells in growth hormone adenomas. Endocr Pathol. 2015;26:263–72.

    Article  CAS  PubMed  Google Scholar 

  33. Revel M, Sautes-Fridman C, Fridman WH, Roumenina LT. C1q+ macrophages: passengers or drivers of cancer progression. Trends Cancer. 2022;8:517–26. https://doi.org/10.1016/j.trecan.2022.02.006.

  34. Jardine L, Barge D, Ames-Draycott A, Pagan S, Cookson S, Spickett G, et al. Rapid detection of dendritic cell and monocyte disorders using CD4 as a lineage marker of the human peripheral blood antigen-presenting cell compartment. Front Immunol. 2013;4:495.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Jhunjhunwala S, Hammer C, Delamarre L. Antigen presentation in cancer: insights into tumour immunogenicity and immune evasion. Nat Rev Cancer. 2021;21:298–312.

    Article  CAS  PubMed  Google Scholar 

  36. Imanishi T, Saito T. T cell co-stimulation and functional modulation by innate signals. Trends Immunol. 2020;41:200–12.

    Article  CAS  PubMed  Google Scholar 

  37. Mota JM, Leite CA, Souza LE, Melo PH, Nascimento DC, de-Deus-Wagatsuma VM, et al. Post-sepsis state induces tumor-associated macrophage accumulation through CXCR4/CXCL12 and favors tumor progression in mice. Cancer Immunol Res. 2016;4:312–22.

    Article  CAS  PubMed  Google Scholar 

  38. Du Y, Sui Y, Cao J, Jiang X, Wang Y, Yu J, et al. Dynamic changes in myofibroblasts affect the carcinogenesis and prognosis of bladder cancer associated with tumor microenvironment remodeling. Front Cell Dev Biol. 2022;10:833578.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gocher AM, Workman CJ, Vignali DAA. Interferon-gamma: teammate or opponent in the tumour microenvironment? Nat Rev Immunol. 2021;22:158–172. https://doi.org/10.1038/s41577-021-00566-3.

  40. Kreso A, Dick JE. Evolution of the cancer stem cell model. Cell Stem Cell. 2014;14:275–91.

    Article  CAS  PubMed  Google Scholar 

  41. Atashzar MR, Baharlou R, Karami J, Abdollahi H, Rezaei R, Pourramezan F, et al. Cancer stem cells: a review from origin to therapeutic implications. J Cell Physiol. 2020;235:790–803.

    Article  CAS  PubMed  Google Scholar 

  42. Mantovani G, Giardino E, Treppiedi D, Catalano R, Mangili F, Spada A, et al. Stem cells in pituitary tumors: experimental evidence supporting their existence and their role in tumor clinical behavior. Front Endocrinol (Lausanne). 2019;10:745.

    Article  PubMed  Google Scholar 

  43. Mertens F, Gremeaux L, Chen J, Fu Q, Willems C, Roose H, et al. Pituitary tumors contain a side population with tumor stem cell-associated characteristics. Endocr Relat Cancer. 2015;22:481–504.

    Article  CAS  PubMed  Google Scholar 

  44. Prager BC, Xie Q, Bao S, Rich JN. Cancer stem cells: the architects of the tumor ecosystem. Cell Stem Cell. 2019;24:41–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Puram SV, Tirosh I, Parikh AS, Patel AP, Yizhak K, Gillespie S, et al. Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. Cell. 2017;171:1611–24.e24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cui Y, Li C, Jiang Z, Zhang S, Li Q, Liu X, et al. Single-cell transcriptome and genome analyses of pituitary neuroendocrine tumors. Neuro Oncol. 2021;23:1859–71. https://doi.org/10.1093/neuonc/noab102.

  47. Ruan X, Yi J, Hu L, Zhi J, Zeng Y, Hou X, et al. Reduced MHC class II expression in medullary thyroid cancer identifies patients with poor prognosis. Endocr Relat Cancer. 2022;29:87–98.

    Article  CAS  PubMed  Google Scholar 

  48. Chowell D, Morris LGT, Grigg CM, Weber JK, Samstein RM, Makarov V, et al. Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science. 2018;359:582–7.

    Article  CAS  PubMed  Google Scholar 

  49. Cho IJ, Lui PP, Obajdin J, Riccio F, Stroukov W, Willis TL, et al. Mechanisms, hallmarks, and implications of stem cell quiescence. Stem Cell Rep. 2019;12:1190–200.

    Article  CAS  Google Scholar 

  50. Howley BV, Mohanty B, Dalton A, Grelet S, Karam J, Dincman T, et al. The ubiquitin E3 ligase ARIH1 regulates hnRNP E1 protein stability, EMT and breast cancer progression. Oncogene. 2022;41:1679–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Godfrey DI, Stankovic S, Baxter AG. Raising the NKT cell family. Nat Immunol. 2010;11:197–206.

    Article  CAS  PubMed  Google Scholar 

  52. Nelson A, Lukacs JD, Johnston B. The current landscape of NKT cell immunotherapy and the hills ahead. Cancers. 2021;13:5174. https://doi.org/10.3390/cancers13205174.

  53. Godfrey DI, Uldrich AP, McCluskey J, Rossjohn J, Moody DB. The burgeoning family of unconventional T cells. Nat Immunol. 2015;16:1114–23.

    Article  CAS  PubMed  Google Scholar 

  54. Shao XQ, Chen ZY, Wang M, Yang YP, Yu YF, Liu WJ, et al. Effects of long-acting somatostatin analogues on lipid metabolism in patients with newly diagnosed acromegaly: a retrospective study of 120 cases. Horm Metab Res. 2022;54:25–32.

    Article  CAS  PubMed  Google Scholar 

  55. Wang M, Guo S, He M, Shao X, Feng L, Yu Y, et al. High-performance liquid chromatography-mass spectrometry-based lipid metabolite profiling of acromegaly. J Clin Endocrinol Metab. 2020;105:e1075–e1084. https://doi.org/10.1210/clinem/dgaa014.

  56. Pellicci DG, Koay HF, Berzins SP. Thymic development of unconventional T cells: how NKT cells, MAIT cells and gammadelta T cells emerge. Nat Rev Immunol. 2020;20:756–70.

    Article  CAS  PubMed  Google Scholar 

  57. Väyrynen JP, Haruki K, Lau MC, Väyrynen SA, Ugai T, Akimoto N, et al. Spatial organization and prognostic significance of NK and NKT-like cells via multimarker analysis of the colorectal cancer microenvironment. Cancer Immunol Res. 2022;10:215–27.

    Article  PubMed  Google Scholar 

  58. Le Bouteiller P, Barakonyi A, Giustiniani J, Lenfant F, Marie-Cardine A, Aguerre-Girr M, et al. Engagement of CD160 receptor by HLA-C is a triggering mechanism used by circulating natural killer (NK) cells to mediate cytotoxicity. Proc Natl Acad Sci USA. 2002;99:16963–8.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kim TJ, Park G, Kim J, Lim SA, Kim J, Im K, et al. CD160 serves as a negative regulator of NKT cells in acute hepatic injury. Nat Commun. 2019;10:3258.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Derynck R, Turley SJ, Akhurst RJ. TGFβ biology in cancer progression and immunotherapy. Nat Rev Clin Oncol. 2021;18:9–34.

    Article  PubMed  Google Scholar 

  61. Wang B, Zhang S, Tong F, Wang Y, Wei L. HPV(+) HNSCC-derived exosomal miR-9-5p inhibits TGF-β signaling-mediated fibroblast phenotypic transformation through NOX4. Cancer Sci. 2022;113:1475–87. https://doi.org/10.1111/cas.15281.

  62. Nan P, Dong X, Bai X, Lu H, Liu F, Sun Y, et al. Tumor-stroma TGF-β1-THBS2 feedback circuit drives pancreatic ductal adenocarcinoma progression via integrin α(v)β(3)/CD36-mediated activation of the MAPK pathway. Cancer Lett. 2022;528:59–75.

    Article  CAS  PubMed  Google Scholar 

  63. Stuelten CH, Zhang YE. Transforming growth factor-β: an agent of change in the tumor microenvironment. Front Cell Dev Biol. 2021;9:764727.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Grauel AL, Nguyen B, Ruddy D, Laszewski T, Schwartz S, Chang J, et al. TGFbeta-blockade uncovers stromal plasticity in tumors by revealing the existence of a subset of interferon-licensed fibroblasts. Nat Commun. 2020;11:6315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Saénz-de-Santa-María I, Celada L, Chiara MD. The leader position of mesenchymal cells expressing n-cadherin in the collective migration of epithelial cancer. Cells. 2020;9:731. https://doi.org/10.3390/cells9030731.

  66. Labernadie A, Kato T, Brugués A, Serra-Picamal X, Derzsi S, Arwert E, et al. A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion. Nat Cell Biol. 2017;19:224–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang MD, Xiang H, Zhang L, Wang C. Integration of OV6 expression and CD68(+) tumor-associated macrophages with clinical features better predicts the prognosis of patients with hepatocellular carcinoma. Transl Oncol. 2022;25:101509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Courtney AN, Tian G, Metelitsa LS. Natural killer T cells and other innate-like T lymphocytes as emerging platforms for allogeneic cancer cell therapy. Blood. 2022:blood.2022016201. https://doi.org/10.1182/blood.2022016201.

Download references

Acknowledgements

We appreciated the kindly help from Dr. Tang Jie (West China Hospital of Sichuan University) for technical support in scRNA-seq experiments, and Prof. Lu Kefeng (West China Hospital of Sichuan University) for language editing. We also appreciated the help from Figdraw Group for providing images in Fig. 1a.

Funding

We appreciated the financial supports from the National Natural Science Foundation of China (Grants No. 82072582), Sichuan Science and Technology Program (Grants No. 2023NSFSC1869 and 2022YFS0322), Post-Doctor Research Project, West China Hospital, Sichuan University (Grants No. 2020HXBH157) and 1.3.5 project for disciplines of excellence, West China Hospital, Sichuan University (Grants No. 2019HXFH018).

Author information

Authors and Affiliations

Authors

Contributions

LL, SY, HL, SJ and PZ conceived the project. LL and SY wrote the manuscript with help from all authors. HL, XL and WM performed scRNA-seq. LL, HL and LL performed IF, IHC and imaging. LL conducted the bioinformatics analyses. LL and YJ performed cellular and molecular investigations. AS constructed some of the figures. All authors edited and proofread the manuscript.

Corresponding authors

Correspondence to Huihui Li, Peizhi Zhou or Senlin Yin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

All experimental procedures involved human tumour samples were approved by the Institutional Review Board of West China Hospital of Sichuan University. Signed informed consents were obtain from patients before surgery. The animal experiments were performed according to the Guidelines set forth by Chinese National Institutes of Health and institutional guidelines and approved by the Biomedical Research Ethics Committee of West China Hospital of Sichuan University.

Consent for publication

Not applicable.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyu, L., Jiang, Y., Ma, W. et al. Single-cell sequencing of PIT1-positive pituitary adenoma highlights the pro-tumour microenvironment mediated by IFN-γ-induced tumour-associated fibroblasts remodelling. Br J Cancer 128, 1117–1133 (2023). https://doi.org/10.1038/s41416-022-02126-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-022-02126-5

This article is cited by

Search

Quick links