Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Clinical Research Article
  • Published:

BMI modifies the effect of pregnancy complications on risk of small- or large-for-gestational-age newborns

Abstract

Background

Maternal physical condition (reflected by maternal body mass index (BMI) at delivery) and pregnancy complications influence neonatal health outcomes. High BMI during pregnancy increases various health problems’ risks, but studies about the synthesized effect of these factors on fetal growth, are scarce.

Methods

The retrospective cohort study was conducted in Zhejiang Province, China from 1 January 2019 to 31 December 2021. The associations between complications and small-for-gestational-age (SGA) and large-for-gestational-age (LGA) were measured by the Fine-Gray model and subgroup analysis. Effect modification and interaction analyses were conducted to explore BMI’s modification effect and complications’ interaction.

Results

Several complications increased the risk for SGA and LGA, some significance varied in different subgroups. There was a positive effect modification of gestational diabetes mellitus (GDM) across BMI strata on LGA (relative excess risk due to interaction (RERI) [95% CI] = 0.57 [0.09,1.04]). Several pairwise complications’ interactions were synergistic (e.g., pregestational diabetes and intraamniotic infection for SGA (ratio of ORs [95% CI] = 8.50 [1.74,41.37]), pregestational diabetes and assisted reproductive technology (ART) for LGA (ratio of ORs [95% CI] = 2.71 [1.11,6.62])), one was antagonistic (placental problems and ART for LGA (ratio of ORs [95% CI] = 0.58 [0.35,0.96])).

Conclusions

High-BMI positively modified the risk of GDM on LGA. Many interactions existed when two specific pregnancy complications occurred simultaneously.

Impact

  • This is the largest retrospective study covering more than 10 pregnancy complications to date in this aspect.

  • High-BMI (BMI > 28 kg/m2) positively modifies the risk of GDM on LGA. Many pregnancy complications influence the risk of SGA and LGA, with several interactions that may create a “syndrome” effect.

  • Pregnant women with different BMIs should consider the additional risks caused by pregnancy complications for their heterogeneous effects on abnormal fetal growth.

  • Measures should be taken to prevent the occurrence of other exposure factors in the “syndrome”. This study may aid in developing a new strategy for improving neonatal outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The inclusion and exclusion criteria of the study population.
Fig. 2: The effects of related complications on the risk of abnormal fetal birth weight were analyzed using the Fine-Gray model according to the stratification of BMI at delivery.
Fig. 3: The disease relationship diagram of pregnancy complications.

Similar content being viewed by others

Data availability

Data available on request due to restrictions, e.g., privacy or ethical restrictions. The data presented in this study are available upon request from the corresponding author. The data are not publicly available due to participant privacy.

References

  1. Opondo, C. et al. Variations in neonatal mortality, infant mortality, preterm birth and birth weight in England and Wales according to ethnicity and maternal country or region of birth: an analysis of Linked National Data from 2006 to 2012. J. Epidemiol. Community Health 74, 336–345 (2020).

    Article  PubMed  Google Scholar 

  2. Za’im Sahul Hameed, M., Sutan, R., Mahdy, Z. A., Tamil, A. M. & Sulong, S. Maternal variables as determinant of fetal growth: study protocol on customized fetal growth charts in Malaysia (Grow-My). Front. Med. (Lausanne) 8, 592462 (2021).

    Article  PubMed  Google Scholar 

  3. Chung, J. H., Boscardin, W. J., Garite, T. J., Lagrew, D. C. & Porto, M. Ethnic differences in birth weight by gestational age: at least a partial explanation for the hispanic epidemiologic paradox? Am. J. Obstet. Gynecol. 189, 1058–1062 (2003).

    Article  PubMed  Google Scholar 

  4. Capital Institute of Pediatrics, T. C. S. G. O. N. C. O. t. P. G. & Development of, C. [a National Survey on Physical Growth and Development of Children under Seven Years of Age in Nine Cities of China in 2015]. Zhonghua Er Ke Za Zhi 56, 192–199 (2018).

  5. Mikolajczyk, R. T. et al. A global reference for fetal-weight and birthweight percentiles. Lancet 377, 1855–1861 (2011).

    Article  PubMed  Google Scholar 

  6. Cunningham F. G. et al. Williams Obstetrics. 23 edn. (Mcgraw–Hill, 2010).

  7. Lee, A. C. et al. National and regional estimates of term and preterm babies born small for gestational age in 138 low-income and middle-income countries in 2010. Lancet Glob. Health 1, e26–e36 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Harvey, L., van Elburg, R. & van der Beek, E. M. Macrosomia and large for gestational age in Asia: one size does not fit all. J. Obstet. Gynaecol. Res. 47, 1929–1945 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Pilliod, R. A., Cheng, Y. W., Snowden, J. M., Doss, A. E. & Caughey, A. B. The risk of intrauterine fetal death in the small-for-gestational-age fetus. Am. J. Obstet. Gynecol. 207, 318.e311–316 (2012).

    Article  Google Scholar 

  10. Williams, R. L. et al. Fetal growth and perinatal viability in California. Obstet. Gynecol. 59, 624–632 (1982).

    CAS  PubMed  Google Scholar 

  11. Ray, J. G., Park, A. L. & Fell, D. B. Mortality in infants affected by preterm birth and severe small-for-gestational age birth weight. Pediatrics 140, e20171881 (2017).

    Article  PubMed  Google Scholar 

  12. Esakoff, T. F., Cheng, Y. W., Sparks, T. N. & Caughey, A. B. The association between birthweight 4000 G or greater and perinatal outcomes in patients with and without gestational diabetes mellitus. Am. J. Obstet. Gynecol. 200, 672.e671–674 (2009).

    Article  Google Scholar 

  13. Baer, R. J. et al. Population-based risks of mortality and preterm morbidity by gestational age and birth weight. J. Perinatol. 36, 1008–1013 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Bizerea-Moga, T. O. et al. Extreme birth weight and metabolic syndrome in children. Nutrients 14, 204 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Evagelidou, E. N. et al. Prothrombotic state, cardiovascular, and metabolic syndrome risk factors in prepubertal children born large for gestational age. Diabetes Care 33, 2468–2470 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sacchi, C. et al. Association of intrauterine growth restriction and small for gestational age status with childhood cognitive outcomes: a systematic review and meta-analysis. JAMA Pediatr. 174, 772–781 (2020).

    Article  PubMed  Google Scholar 

  17. Li, F. et al. Adverse pregnancy outcomes among mothers with hypertensive disorders in pregnancy: a meta-analysis of cohort studies. Pregnancy Hypertens. 24, 107–117 (2021).

    Article  PubMed  Google Scholar 

  18. Martineau, M. G. et al. The metabolic profile of intrahepatic cholestasis of pregnancy is associated with impaired glucose tolerance, dyslipidemia, and increased fetal growth. Diabetes Care 38, 243–248 (2015).

    Article  PubMed  Google Scholar 

  19. Gullo, G. et al. Neonatal outcomes and long-term follow-up of children born from frozen embryo, a narrative review of latest research findings. Medicina (Kaunas.) 58, 1218 (2022).

    Article  PubMed  Google Scholar 

  20. Di Tommaso, M. et al. Influence of assisted reproductive technologies on maternal and neonatal outcomes in early preterm deliveries. J. Gynecol. Obstet. Hum. Reprod. 48, 845–848 (2019).

    Article  PubMed  Google Scholar 

  21. Goldstein, R. F. et al. Association of gestational weight gain with maternal and infant outcomes: a systematic review and meta-analysis. JAMA 317, 2207–2225 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Pileggi, V. N. et al. Maternal BMI at the time of birth and selected risk factors associated with severe neonatal outcomes: a secondary analysis of the who better outcomes in labour difficulty (Bold) project. Br. J. Nutr. 124, 1086–1092 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Fakhraei, R. et al. Predictors of adverse pregnancy outcomes in pregnant women living with obesity: a systematic review. Int. J. Environ. Res. Public Health 19, 2063 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gao, M. et al. The cut-off points of body mass index and waist circumference for predicting metabolic risk factors in Chinese adults. Zhonghua Liu Xing Bing Xue Za Zhi 40, 1533–1540 (2019).

    CAS  PubMed  Google Scholar 

  25. Group, H. S. C. R. Hyperglycaemia and adverse pregnancy outcome (hapo) study: associations with maternal body mass index. BJOG 117, 575–584 (2010).

  26. Atalah, E., Castillo, C., Castro, R. & Aldea, A. [Proposal of a new standard for the nutritional assessment of pregnant women]. Rev. Med Chil. 125, 1429–1436 (1997).

    CAS  PubMed  Google Scholar 

  27. Noor, F. et al. Body mass index and serum thyroid stimulating hormone in third trimester of pregnancy. Mymensingh Med. J. 30, 69–72 (2021).

    CAS  PubMed  Google Scholar 

  28. Ortega-Senovilla, H., van Poppel, M. N. M., Desoye, G. & Herrera, E. Angiopoietin-like protein 4 (Angptl4) is related to gestational weight gain in pregnant women with obesity. Sci. Rep. 8, 12428 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhu, L. et al. Chinese neonatal birth weight curve for different gestational age. Zhonghua Er Ke Za Zhi 53, 97–103 (2015).

    PubMed  Google Scholar 

  30. Higgins, R. D. et al. Evaluation and management of women and newborns with a maternal diagnosis of chorioamnionitis: summary of a workshop. Obstet. Gynecol. 127, 426–436 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nolan, E. K. & Chen, H. Y. A comparison of the Cox model to the fine-gray model for survival analyses of Re-fracture rates. Arch. Osteoporos. 15, 86 (2020).

    Article  PubMed  Google Scholar 

  32. Knol, M. J. & VanderWeele, T. J. Recommendations for presenting analyses of effect modification and interaction. Int. J. Epidemiol. 41, 514–520 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Nie, Z. Q. et al. Application of SAS macro to evaluated multiplicative and additive interaction in logistic and cox regression in clinical practices. Zhonghua Liu Xing Bing. Xue Za Zhi 37, 737–740 (2016).

    CAS  PubMed  Google Scholar 

  34. Ahlbom, A. Modern epidemiology, 4th edition. Tl Lash, Tj Vanderweele, S Haneuse, Kj Rothman. Wolters Kluwer, 2021. Eur. J. Epidemiol. 36, 767–768 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  35. VanderWeele, T. J. Principles of confounder selection. Eur. J. Epidemiol. 34, 211–219 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Schulz, L. C., Schlitt, J. M., Caesar, G. & Pennington, K. A. Leptin and the placental response to maternal food restriction during early pregnancy in mice. Biol. Reprod. 87, 120 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sacks, D. A. Determinants of fetal growth. Curr. Diab. Rep. 4, 281–287 (2004).

    Article  PubMed  Google Scholar 

  38. Zhang, J. et al. Early prediction of preeclampsia and small-for-gestational-age via multi-marker model in Chinese pregnancies: a prospective screening study. BMC Pregnancy Childbirth 19, 304 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Bernardes, T. P. et al. Early and late onset pre-eclampsia and small for gestational age risk in subsequent pregnancies. PLoS One 15, e0230483 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cohen, J. M. et al. Maternal antioxidant levels in pregnancy and risk of preeclampsia and small for gestational age birth: a systematic review and meta-analysis. PLoS One 10, e0135192 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Gotsch, F. et al. Preeclampsia and small-for-gestational age are associated with decreased concentrations of a factor involved in angiogenesis: soluble tie-2. J. Matern. Fetal Neonatal Med. 21, 389–402 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Longo, S., Borghesi, A., Tzialla, C. & Stronati, M. Iugr and infections. Early Hum. Dev. 90, S42–S44 (2014).

    Article  PubMed  Google Scholar 

  43. Vrachnis, N., Botsis, D. & Iliodromiti, Z. The fetus that is small for gestational age. Ann. N. Y. Acad. Sci. 1092, 304–309 (2006).

    Article  PubMed  Google Scholar 

  44. Wang, M., Wang, X., Chen, Z. & Zhang, F. Gestational hypertensive disease and small for gestational age infants in twin pregnancy: a systematic review and meta-analysis. J. Obstet. Gynaecol. Res. 48, 2677–2685 (2022).

    Article  PubMed  Google Scholar 

  45. Tsujimoto, Y. et al. Association of low birthweight and premature birth with hypertensive disorders in pregnancy: a systematic review and meta-analysis. J. Hypertens. 40, 205–212 (2022).

    Article  CAS  PubMed  Google Scholar 

  46. Siargkas, A. et al. The impact of lateral placenta on preeclampsia and small for gestational age neonates: a systematic review and meta-analysis. J. Perinat. Med. 51, 468–476 (2022).

    Article  PubMed  Google Scholar 

  47. Räisänen, S., Kancherla, V., Kramer, M. R., Gissler, M. & Heinonen, S. Placenta previa and the risk of delivering a small-for-gestational-age newborn. Obstet. Gynecol. 124, 285–291 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Weiner, E. et al. The effect of placenta previa on fetal growth and pregnancy outcome, in correlation with placental pathology. J. Perinatol. 36, 1073–1078 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. Hu, H. et al. The mediating role of gestational diabetes mellitus in the associations of maternal prepregnancy body mass index with neonatal birth weight. J. Diabetes 14, 26–33 (2022).

    Article  PubMed  Google Scholar 

  50. Yue, S. et al. Clinical consequences of gestational diabetes mellitus and maternal obesity as defined by Asian BMI thresholds in Viet Nam: a prospective, hospital-based, cohort study. BMC Pregnancy Childbirth 22, 195 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Yarde, F. et al. Prenatal famine, birthweight, reproductive performance and age at menopause: The Dutch Hunger Winter Families Study. Hum. Reprod. 28, 3328–3336 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Takaya, J. Calcium-deficiency during pregnancy affects insulin resistance in offspring. Int. J. Mol. Sci. 22, 7008 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wei, Y. et al. Preconception diabetes mellitus and adverse pregnancy outcomes in over 6.4 million women: a population-based cohort study in China. PLoS Med. 16, e1002926 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Bettencourt-Silva, R. et al. Small for Gestational Age and Gestational Diabetes—Should We Be More Permissive?. <https://www.endocrine-abstracts.org/ea/0049/ea0049ep564> (2017 May).

  55. Mills, H. L. et al. The effect of a lifestyle intervention in obese pregnant women on gestational metabolic profiles: findings from the UK pregnancies better eating and activity trial (Upbeat) randomised controlled trial. BMC Med. 17, 15 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Jacob, S. et al. Targeted metabolomics demonstrates distinct and overlapping maternal metabolites associated with BMI, glucose, and insulin sensitivity during pregnancy across four ancestry groups. Diabetes Care 40, 911–919 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kelly, R. S. et al. Integration of metabolomic and transcriptomic networks in pregnant women reveals biological pathways and predictive signatures associated with preeclampsia. Metabolomics 13, 7 (2017).

    Article  PubMed  Google Scholar 

  58. Taylor, K. et al. Differences in pregnancy metabolic profiles and their determinants between White European and South Asian women: findings from the born in Bradford Cohort. Metabolites 9, 190 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Catalano, P. M. et al. The hyperglycemia and adverse pregnancy outcome study: associations of GDM and obesity with pregnancy outcomes. Diabetes Care 35, 780–786 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Alfadhli, E. M. Maternal obesity influences birth weight more than gestational diabetes author. BMC Pregnancy Childbirth 21, 111 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zymperdikas, C. F., Zymperdikas, V. F., Mastorakos, G., Grimbizis, G. & Goulis, D. G. Assisted reproduction technology outcomes in women with infertility and preexisting diabetes mellitus: a systematic review. Hormones (Athens) 21, 23–31 (2022).

    Article  PubMed  Google Scholar 

  62. Lascar, N. et al. Type 2 diabetes in adolescents and young adults. Lancet Diabetes Endocrinol. 6, 69–80 (2018).

    Article  PubMed  Google Scholar 

  63. Cai, S. et al. Nutritional status impacts epigenetic regulation in early embryo development: a scoping review. Adv. Nutr. 12, 1877–1892 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pirtea, P., Ziegler, D. & Ayoubi, J. M. Children born from frozen embryo transfers: is there a difference? Fertil. Steril. 114, 502–503 (2020).

    Article  PubMed  Google Scholar 

  65. Sheiner, E. et al. Nuchal cord is not associated with adverse perinatal outcome. Arch. Gynecol. Obstet. 274, 81–83 (2006).

    Article  PubMed  Google Scholar 

  66. Osak, R., Webster, K. M., Bocking, A. D., Campbell, M. K. & Richardson, B. S. Nuchal cord evident at birth impacts on fetal size relative to that of the placenta. Early Hum. Dev. 49, 193–202 (1997).

    Article  CAS  PubMed  Google Scholar 

  67. Hoh, J. K., Sung, Y. M. & Park, M. I. Fetal heart rate parameters and perinatal outcomes in fetuses with nuchal cords. J. Obstet. Gynaecol. Res. 38, 358–363 (2012).

    Article  PubMed  Google Scholar 

  68. Wu, G., Bazer, F. W., Cudd, T. A., Meininger, C. J. & Spencer, T. E. Maternal nutrition and fetal development. J. Nutr. 134, 2169–2172 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Denison, F. C. et al. Care of women with obesity in pregnancy: green-top guideline no. 72. BJOG 126, e62–e106 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all participants, coaches, research midwives/nurses, and health professionals who collaborated in the recruitment and procedures. In particular, we would like to thank The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University for their valuable data and sufficient support. We would like to express our gratitude to Springer Nature (https://www.springernature.com) for the expert linguistic services provided.

Funding

This research was partially supported by the Medical Science and Technology Project of Zhejiang Province, China (No. 2023KY149, 2020KY185), and the Public Welfare Science and Technology Plan Project of Wenzhou, China (No. Y20200087). The funders had no role in any aspect of the study beyond funding.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, F.W., Z.Y., and P.W.; Data curation, W.L.; Formal analysis, P.W. and Y.H.; Funding acquisition, F.W.; Investigation, P.W., Z.Y., W.L.; Methodology, F.W., Z.Y., and P.W.; Project administration, F.W.; Resources, F.W.; Software, Z.Y., P.W., and Y.H.; Supervision, F.W.; Validation, F.W., Z.Y., P.W., W.L.; Visualization, Z.Y., P.W., Y.H., F.D., X.L.; Writing—original draft, F.W., Z.Y., P.W., W.L.; Writing—review & editing, F.W., Z.Y., P.W.

Corresponding author

Correspondence to Fan Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The study was conducted according to the guidelines of the Declaration of Helsinki and approved by the Ethics Committee of The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University (2021-K-318-02). This study was granted exemption for ethics approval by the Ethics Committee of The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University (2021-K-318-02). This study did not involve human intervention.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Yu, Z., Hu, Y. et al. BMI modifies the effect of pregnancy complications on risk of small- or large-for-gestational-age newborns. Pediatr Res (2024). https://doi.org/10.1038/s41390-024-03298-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41390-024-03298-x

Search

Quick links