Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Correspondence
  • Published:

The schizophrenia susceptibility gene NAGA regulates dendritic spine density: further evidence for the dendritic spine pathology of schizophrenia

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Naga knockdown resulted in significant decrease of dendritic spine density.

References

  1. Penzes P, Cahill ME, Jones KA, VanLeeuwen JE, Woolfrey KM. Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci. 2011;14:285–93.

    Article  CAS  Google Scholar 

  2. Glausier JR, Lewis DA. Dendritic spine pathology in schizophrenia. Neuroscience. 2013;251:90–107.

    Article  CAS  Google Scholar 

  3. Konopaske GT, Lange N, Coyle JT, Benes FM. Prefrontal cortical dendritic spine pathology in schizophrenia and bipolar disorder. JAMA Psychiatry. 2014;71:1323–31.

    Article  Google Scholar 

  4. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511:421–7.

    Article  Google Scholar 

  5. Sekar A, Bialas AR, de Rivera H, Davis A, Hammond TR, Kamitaki N, et al. Schizophrenia risk from complex variation of complement component 4. Nature. 2016;530:177–83.

    Article  CAS  Google Scholar 

  6. Yilmaz M, Yalcin E, Presumey J, Aw E, Ma M, Whelan CW, et al. Overexpression of schizophrenia susceptibility factor human complement C4A promotes excessive synaptic loss and behavioral changes in mice. Nat Neurosci. 2021;24:214–24.

    Article  CAS  Google Scholar 

  7. Glantz LA, Lewis DA. Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry. 2000;57:65–73.

    Article  CAS  Google Scholar 

  8. Li YF, Ma CG, Li WQ, Yang YF, Li XY, Liu JW, et al. A missense variant in NDUFA6 confers schizophrenia risk by affecting YY1 binding and NAGA expression. Mol Psychiatry. 2021; https://doi.org/10.1038/s41380-021-01125-x.

  9. Fromer M, Roussos P, Sieberts SK, Johnson JS, Kavanagh DH, Perumal TM, et al. Gene expression elucidates functional impact of polygenic risk for schizophrenia. Nat Neurosci. 2016;19:1442–53.

    Article  CAS  Google Scholar 

  10. Kippe JM, Mueller TM, Haroutunian V, Meador-Woodruff JH. Abnormal N-acetylglucosaminyltransferase expression in prefrontal cortex in schizophrenia. Schizophr Res. 2015;166:219–24.

    Article  Google Scholar 

  11. Mueller TM, Haroutunian V, Meador-Woodruff JH. N-Glycosylation of GABAA receptor subunits is altered in Schizophrenia. Neuropsychopharmacology. 2014;39:528–37.

    Article  CAS  Google Scholar 

  12. Williams SE, Mealer RG, Scolnick EM, Smoller JW, Cummings RD. Aberrant glycosylation in schizophrenia: a review of 25 years of post-mortem brain studies. Mol Psychiatry. 2020;25:3198–207.

    Article  CAS  Google Scholar 

  13. Mealer RG, Williams SE, Daly MJ, Scolnick EM, Cummings RD, Smoller JW. Glycobiology and schizophrenia: a biological hypothesis emerging from genomic research. Mol Psychiatry. 2020;25:3129–39.

    Article  Google Scholar 

  14. Licinio J, Wong ML. Advances in schizophrenia research: glycobiology, white matter abnormalities, and their interactions. Mol Psychiatry. 2020;25:3116–8.

    Article  Google Scholar 

  15. Wang AM, Schindler D, Desnick R. Schindler disease: the molecular lesion in the alpha-N-acetylgalactosaminidase gene that causes an infantile neuroaxonal dystrophy. J Clin Invest. 1990;86:1752–6.

    Article  CAS  Google Scholar 

  16. Fromer M, Pocklington AJ, Kavanagh DH, Williams HJ, Dwyer S, Gormley P, et al. De novo mutations in schizophrenia implicate synaptic networks. Nature. 2014;506:179–84.

    Article  CAS  Google Scholar 

  17. Hall J, Trent S, Thomas KL, O’Donovan MC, Owen MJ. Genetic risk for schizophrenia: convergence on synaptic pathways involved in plasticity. Biol Psychiatry. 2015;77:52–58.

    Article  CAS  Google Scholar 

  18. Radulescu E, Jaffe AE, Straub RE, Chen Q, Shin JH, Hyde TM, et al. Identification and prioritization of gene sets associated with schizophrenia risk by co-expression network analysis in human brain. Mol Psychiatry. 2020;25:791–804.

    Article  CAS  Google Scholar 

  19. Kleene R, Schachner M. Glycans and neural cell interactions. Nat Rev Neurosci. 2004;5:195–208.

    Article  CAS  Google Scholar 

  20. Scott H, Panin VM. The role of protein N-glycosylation in neural transmission. Glycobiology. 2014;24:407–17.

    Article  CAS  Google Scholar 

  21. Park DH, Park S, Song JM, Kang M, Lee S, Horak M, et al. N-linked glycosylation of the mGlu7 receptor regulates the forward trafficking and transsynaptic interaction with Elfn1. FASEB J. 2020;34:14977–96.

    Article  CAS  Google Scholar 

  22. Chang WP, Sudhof TC. SV2 renders primed synaptic vesicles competent for Ca2+ -induced exocytosis. J Neurosci. 2009;29:883–97.

    Article  CAS  Google Scholar 

  23. Kwon SE, Chapman ER. Glycosylation is dispensable for sorting of synaptotagmin 1 but is critical for targeting of SV2 and synaptophysin to recycling synaptic vesicles. J Biol Chem. 2012;287:35658–68.

    Article  CAS  Google Scholar 

  24. Yang CP, Li XY, Wu Y, Shen QS, Zeng Y, Xiong QX, et al. Comprehensive integrative analyses identify GLT8D1 and CSNK2B as schizophrenia risk genes. Nat Commun. 2018;9:838.

    Article  Google Scholar 

Download references

Acknowledgements

This study was equally supported by the Key Research Project of Yunnan Province (202101AS070055) and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDPB17). Also was supported by the Distinguished Young Scientists grant of the Yunnan Province (202001AV070006), the Innovative Research Team of Science and Technology department of Yunnan Province (2019HC004), the Western Light Innovative Research Team of Chinses Academy of Sciences, the National Nature Science Foundation of China (31900414 to Y.X.H, 31970561 to X.J.L) and Henan Provincial Key Laboratory of Biological Psychiatry Open Project (ZDSYS2020002 to S.W.L). We thank Miss. Qian Li for her technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

XJL conceived, designed and supervised the whole study. YFL and SWL isolated the primary rat neurons, cultured the neurons and conducted the morphological analyses (dendritic spine density of neurons). JWL performed the data analysis. YXH contributed to this work in data interpretation, data analysis and manuscript revision. YFL wrote the draft of the manuscript. XJL oversaw the project and finalized the manuscript. All authors revised the manuscript critically and approved the final version.

Corresponding author

Correspondence to Xiong-Jian Luo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Li, S., Liu, J. et al. The schizophrenia susceptibility gene NAGA regulates dendritic spine density: further evidence for the dendritic spine pathology of schizophrenia. Mol Psychiatry 26, 7102–7104 (2021). https://doi.org/10.1038/s41380-021-01261-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-021-01261-4

This article is cited by

Search

Quick links