Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Large-scale ATP-independent nucleosome unfolding by a histone chaperone

Abstract

DNA accessibility to regulatory proteins is substantially influenced by nucleosome structure and dynamics. The facilitates chromatin transcription (FACT) complex increases the accessibility of nucleosomal DNA, but the mechanism and extent of its nucleosome reorganization activity are unknown. Here we determined the effects of FACT from the yeast Saccharomyces cerevisiae on single nucleosomes by using single-particle Förster resonance energy transfer (spFRET) microscopy. FACT binding results in dramatic ATP-independent, symmetrical and reversible DNA uncoiling that affects at least 70% of the DNA within a nucleosome, occurs without apparent loss of histones and proceeds via an 'all-or-none' mechanism. A mutated version of FACT is defective in uncoiling, and a histone mutation that suppresses phenotypes caused by this FACT mutation in vivo restores the uncoiling activity in vitro. Thus, FACT-dependent nucleosome unfolding modulates the accessibility of nucleosomal DNA, and this activity is an important function of FACT in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental approach to analyze the effect of FACT on nucleosome structure and dynamics.
Figure 2: Nucleosome unfolding by yFACT is extensive and reversible.
Figure 3: Nucleosome unfolding by yFACT involves the majority of nucleosomal DNA.
Figure 4: Uncoiling of nucleosomal DNA by FACT occurs via an all-or-none mechanism.
Figure 5: Conditional mutations in FACT(Spt16-11) affect nucleosome unfolding in vitro.
Figure 6: FACT-dependent uncoiling of nucleosomal DNA.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Luger, K., Mäder, A.W., Richmond, R.K., Sargent, D.F. & Richmond, T.J. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389, 251–260 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Shaytan, A.K., Landsman, D. & Panchenko, A.R. Nucleosome adaptability conferred by sequence and structural variations in histone H2A-H2B dimers. Curr. Opin. Struct. Biol. 32, 48–57 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kulaeva, O.I., Hsieh, F.-K., Chang, H.-W., Luse, D.S. & Studitsky, V.M. Mechanism of transcription through a nucleosome by RNA polymerase II. Biochim. Biophys. Acta 1829, 76–83 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Gurard-Levin, Z.A., Quivy, J.-P. & Almouzni, G. Histone chaperones: assisting histone traffic and nucleosome dynamics. Annu. Rev. Biochem. 83, 487–517 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Park, Y.-J. & Luger, K. Histone chaperones in nucleosome eviction and histone exchange. Curr. Opin. Struct. Biol. 18, 282–289 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Ransom, M., Dennehey, B.K. & Tyler, J.K. Chaperoning histones during DNA replication and repair. Cell 140, 183–195 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Belotserkovskaya, R., Saunders, A., Lis, J.T. & Reinberg, D. Transcription through chromatin: understanding a complex FACT. Biochim. Biophys. Acta 1677, 87–99 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Formosa, T. The role of FACT in making and breaking nucleosomes. Biochim. Biophys. Acta 1819, 247–255 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Hondele, M. & Ladurner, A.G. Catch me if you can: how the histone chaperone FACT capitalizes on nucleosome breathing. Nucleus 4, 443–449 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Winkler, D.D. & Luger, K. The histone chaperone FACT: structural insights and mechanisms for nucleosome reorganization. J. Biol. Chem. 286, 18369–18374 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brewster, N.K., Johnston, G.C. & Singer, R.A. A bipartite yeast SSRP1 analog comprised of Pob3 and Nhp6 proteins modulates transcription. Mol. Cell. Biol. 21, 3491–3502 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Formosa, T. et al. Spt16-Pob3 and the HMG protein Nhp6 combine to form the nucleosome-binding factor SPN. EMBO J. 20, 3506–3517 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Reinberg, D. & Sims, R.J. III. de FACTo nucleosome dynamics. J. Biol. Chem. 281, 23297–23301 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Formosa, T. FACT and the reorganized nucleosome. Mol. Biosyst. 4, 1085–1093 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Mandemaker, I.K., Vermeulen, W. & Marteijn, J.A. Gearing up chromatin: a role for chromatin remodeling during the transcriptional restart upon DNA damage. Nucleus 5, 203–210 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Erkina, T.Y. & Erkine, A. ASF1 and the SWI/SNF complex interact functionally during nucleosome displacement, while FACT is required for nucleosome reassembly at yeast heat shock gene promoters during sustained stress. Cell Stress Chaperones 20, 355–369 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Takahata, S., Yu, Y. & Stillman, D.J. FACT and Asf1 regulate nucleosome dynamics and coactivator binding at the HO promoter. Mol. Cell 34, 405–415 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cheung, V. et al. Chromatin- and transcription-related factors repress transcription from within coding regions throughout the Saccharomyces cerevisiae genome. PLoS Biol. 6, e277 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Jamai, A., Imoberdorf, R.M. & Strubin, M. Continuous histone H2B and transcription-dependent histone H3 exchange in yeast cells outside of replication. Mol. Cell 25, 345–355 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Voth, W.P. et al. A role for FACT in repopulation of nucleosomes at inducible genes. PLoS One 9, e84092 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Hsieh, F.-K. et al. Histone chaperone FACT action during transcription through chromatin by RNA polymerase II. Proc. Natl. Acad. Sci. USA 110, 7654–7659 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Belotserkovskaya, R. et al. FACT facilitates transcription-dependent nucleosome alteration. Science 301, 1090–1093 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Winkler, D.D., Muthurajan, U.M., Hieb, A.R. & Luger, K. Histone chaperone FACT coordinates nucleosome interaction through multiple synergistic binding events. J. Biol. Chem. 286, 41883–41892 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Stuwe, T. et al. The FACT Spt16 “peptidase” domain is a histone H3-H4 binding module. Proc. Natl. Acad. Sci. USA 105, 8884–8889 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hondele, M. et al. Structural basis of histone H2A–H2B recognition by the essential chaperone FACT. Nature 499, 111–114 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Kemble, D.J., McCullough, L.L., Whitby, F.G., Formosa, T. & Hill, C.P. FACT disrupts nucleosome structure by binding H2A-H2B with conserved peptide motifs. Mol. Cell 60, 294–306 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jamai, A., Puglisi, A. & Strubin, M. Histone chaperone spt16 promotes redeposition of the original h3-h4 histones evicted by elongating RNA polymerase. Mol. Cell 35, 377–383 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Xin, H. et al. yFACT induces global accessibility of nucleosomal DNA without H2A-H2B displacement. Mol. Cell 35, 365–376 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gaykalova, D.A. et al. Structural analysis of nucleosomal barrier to transcription. Proc. Natl. Acad. Sci. USA 112, E5787–E5795 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kulaeva, O.I. et al. Mechanism of chromatin remodeling and recovery during passage of RNA polymerase II. Nat. Struct. Mol. Biol. 16, 1272–1278 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vasudevan, D., Chua, E.Y.D. & Davey, C.A. Crystal structures of nucleosome core particles containing the '601' strong positioning sequence. J. Mol. Biol. 403, 1–10 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Morozov, A.V. et al. Using DNA mechanics to predict in vitro nucleosome positions and formation energies. Nucleic Acids Res. 37, 4707–4722 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kudryashova, K.S. et al. Preparation of mononucleosomal templates for analysis of transcription with RNA polymerase using spFRET. Methods Mol. Biol. 1288, 395–412 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gurunathan, K. & Levitus, M. Single-molecule fluorescence studies of nucleosome dynamics. Curr. Pharm. Biotechnol. 10, 559–568 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Koopmans, W.J.A., Brehm, A., Logie, C., Schmidt, T. & van Noort, J. Single-pair FRET microscopy reveals mononucleosome dynamics. J. Fluoresc. 17, 785–795 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kireeva, M.L. et al. Nucleosome remodeling induced by RNA polymerase II: loss of the H2A/H2B dimer during transcription. Mol. Cell 9, 541–552 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. McCullough, L. et al. Insight into the mechanism of nucleosome reorganization from histone mutants that suppress defects in the FACT histone chaperone. Genetics 188, 835–846 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Böhm, V. et al. Nucleosome accessibility governed by the dimer/tetramer interface. Nucleic Acids Res. 39, 3093–3102 (2011).

    Article  PubMed  CAS  Google Scholar 

  39. Zlatanova, J., Bishop, T.C., Victor, J.-M., Jackson, V. & van Holde, K. The nucleosome family: dynamic and growing. Structure 17, 160–171 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Tsunaka, Y., Fujiwara, Y., Oyama, T., Hirose, S. & Morikawa, K. Integrated molecular mechanism directing nucleosome reorganization by human FACT. Genes Dev. 30, 673–686 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ruone, S., Rhoades, A.R. & Formosa, T. Multiple Nhp6 molecules are required to recruit Spt16-Pob3 to form yFACT complexes and to reorganize nucleosomes. J. Biol. Chem. 278, 45288–45295 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Paull, T.T. & Johnson, R.C. DNA looping by Saccharomyces cerevisiae high mobility group proteins NHP6A/B: consequences for nucleoprotein complex assembly and chromatin condensation. J. Biol. Chem. 270, 8744–8754 (1995).

    Article  CAS  PubMed  Google Scholar 

  43. Biswas, D., Yu, Y., Prall, M., Formosa, T. & Stillman, D.J. The yeast FACT complex has a role in transcriptional initiation. Mol. Cell. Biol. 25, 5812–5822 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wittmeyer, J., Joss, L. & Formosa, T. Spt16 and Pob3 of Saccharomyces cerevisiae form an essential, abundant heterodimer that is nuclear, chromatin-associated, and copurifies with DNA polymerase alpha. Biochemistry 38, 8961–8971 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Formosa, T. et al. Defects in SPT16 or POB3 (yFACT) in Saccharomyces cerevisiae cause dependence on the Hir/Hpc pathway: polymerase passage may degrade chromatin structure. Genetics 162, 1557–1571 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rhoades, A.R., Ruone, S. & Formosa, T. Structural features of nucleosomes reorganized by yeast FACT and its HMG box component, Nhp6. Mol. Cell. Biol. 24, 3907–3917 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bondarenko, V.A. et al. Nucleosomes can form a polar barrier to transcript elongation by RNA polymerase II. Mol. Cell 24, 469–479 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Kudryashova, K.S. et al. Development of fluorescently labeled mononucleosomes to study transcription mechanisms by method of microscopy of single complexes. Moscow Univ. Biol. Sci. Bull. 70, 189–193 (2015).

    Article  Google Scholar 

  49. Buning, R. & van Noort, J. Single-pair FRET experiments on nucleosome conformational dynamics. Biochimie 92, 1729–1740 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Davey, C.A., Sargent, D.F., Luger, K., Maeder, A.W. & Richmond, T.J. Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 a resolution. J. Mol. Biol. 319, 1097–1113 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Lu, X.-J. & Olson, W.K. 3DNA: a versatile, integrated software system for the analysis, rebuilding and visualization of three-dimensional nucleic-acid structures. Nat. Protoc. 3, 1213–1227 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Klose, D. et al. Simulation vs. reality: a comparison of in silico distance predictions with DEER and FRET measurements. PLoS One 7, e39492 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank D. Gaykalova for help with designing the fluorescent probes. This work was supported by NIH grants GM58650 to V.M.S. and R01GM064649 to T.F., and by the Program of the Presidium of the Russian Academy of Sciences 'Basic Research for the Development of Biomedical Technologies' (FIMT-2014-011). Part of this work was performed with the equipment of the Center for Collective Use 'Genom' of the Institute of Molecular Biology, Russian Academy of Sciences (http://www.eimb.ru/RUSSIAN_NEW/INSTITUTE/ccu_genome_c.php/) supported by the Ministry of Education and Science of the Russian Federation (agreement no. 14.621.21.0001, unique project identification number RFMEFI62114X0001). Development and applications of spFRET were supported by the Russian Science Foundation grant 14-24-00031. Facilities of the Supercomputing Center of Lomonosov Moscow State University were used for the modeling of FRET in nucleosomes. LSM710-Confocor3 microscope was granted by the M.V. Lomonosov Moscow State University Program of Development.

Author information

Authors and Affiliations

Authors

Contributions

M.E.V. constructed templates, designed and performed spFRET experiments, analyzed spFRET data, performed gel-shift and native gel experiments and wrote the manuscript; G.A.A. designed and performed computer modeling, developed a program for spFRET raw data analyses and contributed to writing the manuscript; K.S.K. designed and managed spFRET experiments; N.S.G. designed and performed fluorescence-marker gel-shift experiments, interpreted results and designed some experiments; A.K.S. designed computer modeling and wrote the manuscript; O.I.K. designed templates and analyzed the data; L.L.M. purified yFACT and some histones; T.F. wrote the manuscript and interpreted data; P.G.G. interpreted data; M.P.K. interpreted data; V.M.S. purified donor chromatin, designed experiments, interpreted results and wrote the manuscript; A.V.F. designed spFRET experiments, interpreted results and wrote the manuscript.

Corresponding authors

Correspondence to Vasily M Studitsky or Alexey V Feofanov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Analysis of FRET efficiency in unfolded nucleosomes by molecular modeling.

On the left: Color-coded maps of predicted FRET efficiencies for molecular models of labeled nucleosomes with different degree of DNA uncoiling (see Online Methods). The red and blue areas on the color maps for all labels correspond to the structures where all three label pairs are in low or high FRET conformations, respectively. Shaded rectangles correspond to native structures, in which conformations are close to those expected from the crystal structure. On the right: Models of nucleosome conformations corresponding to positions numbered in cyan on the graphs.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1 (PDF 224 kb)

Supplementary Data Set 1

Uncropped gel images (PDF 385 kb)

Models of FACT-dependent uncoiling of nucleosomal DNA

Previously suggested models of nucleosome unfolding. Unfolding of intact nucleosomes could occur via: DNA uncoiling from an intact histone octamer, DNA uncoiling accompanied by octamer disassembly, without or with disruption of the H3:H3 dimer interface, opening of the (H3-H4) dimer-dimer interface without further DNA uncoiling. (MOV 8027 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valieva, M., Armeev, G., Kudryashova, K. et al. Large-scale ATP-independent nucleosome unfolding by a histone chaperone. Nat Struct Mol Biol 23, 1111–1116 (2016). https://doi.org/10.1038/nsmb.3321

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.3321

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing