Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Scientific Correspondence
  • Published:

Protein conformational stabilities can be determined from hydrogen exchange rates

Abstract

Measuring protein conformational stability is one key to solving the protein folding problem. The conformational stability is the free energy change of the unfolding reaction, F ↔ U, under ambient conditions, ΔGU = GU - GF. Traditional methods of measuring ΔGU are solvent (urea or guanidinium chloride (GdmCl)) or thermal denaturation1. Solvent denaturation curves are generally analyzed using the linear extrapolation method (LEM): ΔG = ΔGU(H2O) - m[denaturant]  (1) where m is a measure of the dependence of ΔG on denaturant, and ΔGU(H2O) is an estimate of the conformational stability that assumes that the linear dependence of ΔG on denaturant observed in the transition region continues to 0 M denaturant. Thermal denaturation experiments yield the melting temperature, Tm, the enthalpy change at Tm, ΔHm, and the heat capacity change, ΔCp, which can then be used to calculate ΔGU at any temperature T, ΔGU(T), with the Gibbs–Helmholtz equation: ΔGU(T) = ΔHm(1 - T/Tm) + ΔCp[T - Tm - T ln (T/Tm)]  (2)

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Pace, C.N. CRC Crit. Rev. Biochem. 3, 1–43 (1975).

    Article  CAS  Google Scholar 

  2. Perrett, S., Clarke, J., Hounslow, A. & Fersht, A.R. Biochemistry 34, 9288–9298 ( 1995).

    Article  CAS  Google Scholar 

  3. Padmanabhan, P. et al. Biochemistry 36, 6424–6436 (1997).

  4. Fuentes, E.J. & Wand, A.J. Biochemistry 37, 3687–3698 (1998).

    Article  CAS  Google Scholar 

  5. Bhuyan, A.K. & Udgaonkar, J.B. Proteins 30, 295–308 (1998).

    Article  CAS  Google Scholar 

  6. Krugelund, B.B., Heinemann, B., Knudsen, J. & Poulsen, F.M. Protein Sci. 7, 2237–2248 (1998).

    Article  Google Scholar 

  7. Li, R. & Woodward, C. Protein Sci. 8, 1571–1591 (1999).

    Article  CAS  Google Scholar 

  8. Neira, J.L., Sevilla, P., Menéndez, M., Bruix, M. & Rico, M. J. Mol. Biol. 285, 627–643 (1999).

    Article  CAS  Google Scholar 

  9. Bai, Y., Milne, J.S., Mayne, L. & Englander, S.W. Proteins 20, 4–14 (1994).

    Article  CAS  Google Scholar 

  10. Jabs, A., Weiss, M.S. & Hilgenfeld, R. J. Mol. Biol. 286, 291– 304 (1999).

    Article  CAS  Google Scholar 

  11. Reimer, U. et al. J. Mol. Biol. 279, 449– 460 (1998).

    Article  CAS  Google Scholar 

  12. Mayr, L.M., Odefey, C., Schutkowski, M. & Schmid, F.X. Biochemistry 35, 5550–5561 (1996).

    Article  CAS  Google Scholar 

  13. Makhatadze, G.I., Clore, G.M. & Gronenborn, A.M. Nature Struct. Biol. 2, 852 –855 (1995).

    Article  CAS  Google Scholar 

  14. Bai, Y., Milne, J.S., Mayne, L. & Englander, S.W. Proteins 17, 75–86 (1993).

    Article  CAS  Google Scholar 

  15. Myers, J.K., Pace, C.N. & Scholtz, J.M. Biochemistry 36, 10923– 10929 (1997).

    Article  CAS  Google Scholar 

  16. Delaglio, F. et al. J. Biomol. NMR 6, 277– 293 (1995).

    Article  CAS  Google Scholar 

  17. Mayo, S.L. & Baldwin, R.L. Science 262, 873–876 (1993).

    Article  CAS  Google Scholar 

  18. Wang, A., Robertson, A.D. & Bolen, D.W. Biochemistry 34, 15096– 15104 (1995).

    Article  CAS  Google Scholar 

  19. Neira, J.L., Itzhaki, L.S., Otzen, D.E., Davis, B. & Fersht, A.R. J. Mol. Biol. 270, 99–110 (1997).

    Article  CAS  Google Scholar 

  20. Foord, R.L. & Leatherbarrow, R.J. Biochemistry 37, 2969–2978 (1998).

    Article  CAS  Google Scholar 

  21. Betz, S.F. et al. Biochemistry 35, 7422– 7428 (1996).

    Article  CAS  Google Scholar 

  22. Radford, S.E., Buck, M., Topping, K.D., Dobson, C.M. & Evans, P.A. Proteins 14, 237– 248 (1992).

    Article  CAS  Google Scholar 

  23. Ogasahara, K. & Hamaguchi, K. Biochemistry 61, 199–210 (1967).

    Article  CAS  Google Scholar 

  24. Vugmeyster, L., Kuhlman, B. & Raleigh, D.P. Protein Sci. 7, 1994– 1997 (1998).

    Article  CAS  Google Scholar 

  25. Kuhlman, B. & Raleigh, D.P. Protein Sci. 7, 2405–2412 (1998).

    Article  CAS  Google Scholar 

  26. Swint–Kruse, L. & Robertson, A.D. Biochemistry 35, 171–180 ( 1996).

    Article  Google Scholar 

  27. Swint-Kruse, L. & Robertson, A.D. Biochemistry 34, 4724–4732 ( 1995).

    Article  CAS  Google Scholar 

  28. Yi, Q., Scalley, M.L., Simons, K.T., Gladwin, S.T. & Baker, D. Fold. Des. 2, 271–279 (1997).

    Article  CAS  Google Scholar 

  29. Grantcharova, V.P. & Baker, D. Biochemistry 36, 15685–15692 (1997).

    Article  CAS  Google Scholar 

  30. Chamberlain, A.K., Handel, T.M. & Marqusee, S. Nature Struct. Biol. 3, 782– 787 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank C. Woodward for a preprint of a recent review on hydrogen exchange, S. Marqusee and M. Llinas for sending unpublished data, and many colleagues for helpful discussions and comments. Support from National Institutes of Health and the Robert A. Welch Foundation is acknowledged. J.M.S. is an American Heart Association Established Investigator, and C.N.P. is supported by the Tom and Jean McMullin Professorship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Martin Scholtz or C. Nick Pace.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huyghues-Despointes, B., Scholtz, J. & Pace, C. Protein conformational stabilities can be determined from hydrogen exchange rates. Nat Struct Mol Biol 6, 910–912 (1999). https://doi.org/10.1038/13273

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/13273

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing