Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Global trends, potential mechanisms and early detection of organ damage in SLE

Abstract

Increased longevity of patients with systemic lupus erythematosus (SLE) leads to chronic organ damage accrual, which reduces the possibility of further survival improvement in patients with the disease. Observations from lupus centres worldwide revealed that the prevalence of damage occurring in the cardiovascular system in patients with SLE has increased over the past four decades. The results of a meta-analysis involving over 70 observational studies demonstrated that lupus-related organ damage involving the neuropsychiatric and renal systems also remains a major factor that limits survival improvement in patients with this disease. While efforts to halt acute lupus-related injury are continuing, through early diagnosis and effective use of immunosuppressive agents, a concomitant strategy to improve survival of patients with SLE would be early detection and timely treatment of lupus-related organ damage with meticulous monitoring. This Review discusses the pattern and trend of organ damage in patients with SLE worldwide, the potential serological and genetic mechanisms of organ damage, and the advances in research on potential tools for early detection of lupus-related organ damage, such as functional brain imaging techniques, measurement of endothelial function, identification of biomarkers from body fluids, and development of risk calculation models.

Key Points

  • Overall survival of patients with systemic lupus erythematosus (SLE) has improved substantially over the past 5 decades, but has slowed down since the 1980s, possibly owing to organ damage

  • Although the most common causes of death in patients with SLE are infection and cardiovascular disease, organ damage predicting survival mainly involves renal, cardiovascular, neuropsychiatric and respiratory systems

  • Multiple factors contributing to organ damage in SLE lead to reduction in overall and organ survival, physical function, productivity and health-related quality of life, eventually leading to psychosocial and economic burden

  • Functional MRI of the brain, endothelium-dependent flow-mediated dilatation, identification of urinary biomarkers and FRAX® assessment are potential tools to detect early neuropsychiatric, cardiovascular and renal damage, and osteoporotic fracture, respectively

  • Further evaluation, standardisation and validation of detection tools are required before they can be widely used

  • Current data suggest that a combination (panel) of biomarkers and biomarker signatures will improve accurate and powerful detection of organ involvement in SLE

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Possible mechanisms of chronic organ damage in SLE and the effects on outcome.

Similar content being viewed by others

References

  1. Mak, A., Cheung, M. W., Chiew, H. J., Liu, Y. & Ho, R. C. Global trend of survival and damage of systemic lupus erythematosus: meta-analysis and meta-regression of observational studies from the 1950s to 2000s. Semin. Arthritis Rheum. 41, 830–839 (2012).

    Article  PubMed  Google Scholar 

  2. Lau, C. S. & Mak, A. The socioeconomic burden of SLE. Nat. Rev. Rheumatol. 5, 400–404 (2009).

    Article  PubMed  Google Scholar 

  3. Rahman, P., Gladman, D. D., Urowitz, M. B., Hallett, D. & Tam, L, S. Early damage as measured by the SLICC/ACR damage index is a predictor of mortality in systemic lupus erythematosus. Lupus 10, 93–96 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Chambers, S. A., Allen, E., Rahman, A. & Isenberg, D. Damage and mortality in a group of British patients with systemic lupus erythematosus followed up for over 10 years. Rheumatology (Oxford) 48, 673–675 (2009).

    Article  Google Scholar 

  5. Mok, C. C., Ho, C. T., Wong, R. W. & Lau, C. S. Damage accrual in southern Chinese patients with systemic lupus erythematosus. J. Rheumatol. 30, 1513–1519 (2003).

    PubMed  Google Scholar 

  6. Danila, M. I. et al. Renal damage is the most important predictor of mortality within the damage index: data from LUMINA LXIV, a multiethnic US cohort. Rheumatology (Oxford) 48, 542–545 (2009).

    Article  Google Scholar 

  7. Guarize, J., Appenzeller, S. & Costallat, L. T. Skin damage occurs early in systemic lupus erythematosus and independently of disease duration in Brazilian patients. Rheumatol. Int. 27, 483–487 (2007).

    Article  PubMed  Google Scholar 

  8. Wang, Y. et al. Autoantibodies closely relate to the elevation level of in vivo hydrogen peroxide and tissue damage in systemic lupus erythematosus. DNA Cell Biol. 25, 563–570 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Yung, S. & Chan, T. M. Anti-DNA antibodies in the pathogenesis of lupus nephritis—the emerging mechanisms. Autoimmun. Rev. 7, 317–321 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Yung, S., Cheung, K. F., Zhang, Q. & Chan, T. M. Anti-dsDNA antibodies bind to mesangial annexin II in lupus nephritis. J. Am. Soc. Nephrol. 21, 1912–1927 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yung, S. et al. Anti-DNA antibody induction of protein kinase C phosphorylation and fibronectin synthesis in human and murine lupus and the effect of mycophenolic acid. Arthritis Rheum. 60, 2071–2082 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Sun, K. H., Tang, S. J., Wang, Y. S., Lin, W. J. & You, R. I. Autoantibodies to dsDNA cross-react with the arginine-glycine-rich domain of heterogeneous nuclear ribonucleoprotein A2 (hnRNP A2) and promote methylation of hnRNP A2. Rheumatology (Oxford) 42, 154–161 (2003).

    Article  CAS  Google Scholar 

  13. Wilson, A. M. et al. Asymmetric dimethylarginine correlates with measures of disease severity, major adverse cardiovascular events and all-cause mortality in patients with peripheral arterial disease. Vasc. Med. 15, 267–274 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bultink, I. E., Teerlink, T., Heijst, J. A., Dijkmans, B. A. & Voskuyl, A. E. Raised plasma levels of asymmetric dimethylarginine are associated with cardiovascular events, disease activity, and organ damage in patients with systemic lupus erythematosus. Ann. Rheum. Dis. 64, 1362–1365 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kiani, A. N., Mahoney, J. A. & Petri, M. Asymmetric dimethylarginine is a marker of poor prognosis and coronary calcium in systemic lupus erythematosus. J. Rheumatol. 34, 1502–1505 (2007).

    CAS  PubMed  Google Scholar 

  16. Xiao, Z. S. et al. Effect of asymmetric dimethylarginine on osteoblastic differentiation. Kidney Int. 60, 1699–1704 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Lu, R., Hu, C. P., Wu, X. P., Liao, E. Y. & Li, Y. J. Effect of age on bone mineral density and the serum concentration of endogenous nitric oxide synthase inhibitors in rats. Comp. Med. 52, 224–228 (2002).

    CAS  PubMed  Google Scholar 

  18. Oates, J. C., Shaftman, S. R., Self, S. E. & Gilkeson, G. S. Association of serum nitrate and nitrite levels with longitudinal assessments of disease activity and damage in systemic lupus erythematosus and lupus nephritis. Arthritis Rheum. 58, 263–272 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Saxena, V. et al. Dual roles of immunoregulatory cytokine TGF-beta in the pathogenesis of autoimmunity-mediated organ damage. J. Immunol. 180, 1903–1912 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Taniguchi, Y. et al. Role of transforming growth factor-beta 1 in glomerulonephritis. J. Int. Med. Res. 25, 71–80 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Becker-Merok, A., Eilertsen, G. O. & Nossent, J. C. Levels of transforming growth factor-beta are low in systemic lupus erythematosus patients with active disease. J. Rheumatol. 37, 2039–2045 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Barreto, M. et al. Low frequency of CD4+CD25+ Treg in SLE patients: a heritable trait associated with CTLA4 and TGFbeta gene variants. BMC Immunol. 10, 5 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Font, J. et al. Association of mannose-binding lectin gene polymorphisms with antiphospholipid syndrome, cardiovascular disease and chronic damage in patients with systemic lupus erythematosus. Rheumatology (Oxford) 46, 76–80 (2007).

    Article  CAS  Google Scholar 

  24. Øhlenschlaeger, T., Garred, P., Madsen, H. O. & Jacobsen, S. Mannose-binding lectin variant alleles and the risk of arterial thrombosis in systemic lupus erythematosus. N. Engl. J. Med. 351, 260–267 (2004).

    Article  PubMed  Google Scholar 

  25. Calvo-Alén, J. et al. Systemic lupus erythematosus in a multiethnic US cohort: XXXIV. Deficient mannose-binding lectin exon 1 polymorphisms are associated with cerebrovascular but not with other arterial thrombotic events. Arthritis Rheum. 54, 1940–1945 (2006).

    Article  PubMed  Google Scholar 

  26. Stellato, C. et al. Expression of the chemokine RANTES by a human bronchial epithelial cell line. Modulation by cytokines and glucocorticoids. J. Immunol. 155, 410–418 (1995).

    CAS  PubMed  Google Scholar 

  27. Ye, D. Q. et al. Polymorphisms in the promoter region of RANTES in Han Chinese and their relationship with systemic lupus erythematosus. Arch. Dermatol. Res. 297, 108–113 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Sung, Y. K. et al. Interleukin-10 gene polymorphisms are associated with the SLICC/ACR Damage Index in systemic lupus erythematosus. Rheumatology (Oxford) 45, 400–404 (2006).

    Article  CAS  Google Scholar 

  29. Johansson, M., Arlestig, L., Moller, B., Smedby, T. & Rantapaa-Dahlqvist, S. Oestrogen receptor α gene polymorphisms in systemic lupus erythematosus. Ann. Rheum. Dis. 64, 1611–1617 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lundström, E. et al. HLA-DRB1*04/*13 alleles are associated with vascular disease and antiphospholipid antibodies in systemic lupus erythematosus. Ann. Rheum. Dis. http://dx.doi.org/10.1136/annrheumdis-2012-201760.

  31. Diamond, B. Antibodies and the brain: lessons from lupus. J. Immunol. 185, 2637–2640 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Aranow, C., Diamond, B. & Mackay, M. Glutamate receptor biology and its clinical significance in neuropsychiatric systemic lupus erythematosus. Rheum. Dis. Clin. North Am. 36, 187–201, x–xi (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lapteva, L. et al. Anti-N-methyl-D-aspartate receptor antibodies, cognitive dysfunction, and depression in systemic lupus erythematosus. Arthritis Rheum. 54, 2505–2514 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Kowal, C. et al. Human lupus autoantibodies against NMDA receptors mediate cognitive impairment. Proc. Natl Acad. Sci. USA 103, 19854–19859 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gono, T. et al. NR2-reactive antibody decreases cell viability through augmentation of Ca(2+) influx in systemic lupus erythematosus. Arthritis Rheum. 63, 3952–3959 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Hanly, J. G. et al. Autoantibodies and neuropsychiatric events at the time of systemic lupus erythematosus diagnosis: results from an international inception cohort study. Arthritis Rheum. 58, 843–853 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yoshio, T., Onda, K., Nara, H. & Minota, S. Association of IgG anti-NR2 glutamate receptor antibodies in cerebrospinal fluid with neuropsychiatric systemic lupus erythematosus. Arthritis Rheum. 54, 675–678 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Arinuma, Y., Yanagida, T. & Hirohata, S. Association of cerebrospinal fluid anti-NR2 glutamate receptor antibodies with diffuse neuropsychiatric systemic lupus erythematosus. Arthritis Rheum. 58, 1130–1135 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Lu, X. Y. et al. Anti-alpha-internexin autoantibody from neuropsychiatric lupus induce cognitive damage via inhibiting axonal elongation and promote neuron apoptosis. PLoS One 5, e11124 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Denburg, J. A., Carbotte, R. M. & Denburg, S. D. Neuronal antibodies and cognitive function in systemic lupus erythematosus. Neurology 37, 464–467 (1987).

    Article  CAS  PubMed  Google Scholar 

  41. Hanly, J. G. et al. Cognitive impairment and autoantibodies in systemic lupus erythematosus. Br. J. Rheumatol. 32, 291–296 (1993).

    Article  CAS  PubMed  Google Scholar 

  42. Spezialetti, R., Bluestein, H. G., Peter, J. B. & Alexander, E. L. Neuropsychiatric disease in Sjogren's syndrome: anti-ribosomal P and anti-neuronal antibodies. Am. J. Med. 95, 153–160 (1993).

    Article  CAS  PubMed  Google Scholar 

  43. Kozora, E., Ellison, M. C. & West, S. Reliability and validity of the proposed American College of Rheumatology neuropsychological battery for systemic lupus erythematosus. Arthritis Rheum. 51, 810–818 (2004).

    Article  PubMed  Google Scholar 

  44. DiFrancesco, M. W. et al. Functional magnetic resonance imaging assessment of cognitive function in childhood-onset systemic lupus erythematosus: a pilot study. Arthritis Rheum. 56, 4151–4163 (2007).

    Article  PubMed  Google Scholar 

  45. Fitzgibbon, B. M. et al. Functional MRI in NPSLE patients reveals increased parietal and frontal brain activation during a working memory task compared with controls. Rheumatology (Oxford) 47, 50–53 (2008).

    Article  CAS  Google Scholar 

  46. Mak, A., Ren, T., Fu, E. H., Cheak, A. A. & Ho, R. C. A prospective functional MRI study for executive function in patients with systemic lupus erythematosus without neuropsychiatric symptoms. Semin. Arthritis Rheum. 41, 849–858 (2012).

    Article  PubMed  Google Scholar 

  47. Ren, T,, Ho, R. C. & Mak, A. Dysfunctional cortico-basal ganglia-thalamic circuit and altered hippocampal-amygdala activity on cognitive set-shifting in non-neuropsychiatric, SLE. Arthritis Rheum. 64, 4048–4059 (2012).

    Article  PubMed  Google Scholar 

  48. Folsom, A. R. et al. Coronary artery calcification compared with carotid intima-media thickness in the prediction of cardiovascular disease incidence: the Multi-Ethnic Study of Atherosclerosis (MESA). Arch. Intern. Med. 168, 1333–1339 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Simon, A., Chironi, G. & Levenson, J. Performance of subclinical arterial disease detection as a screening test for coronary heart disease. Hypertension 48, 392–396 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Thompson, T. et al. Progression of carotid intima-media thickness and plaque in women with systemic lupus erythematosus. Arthritis Rheum. 58, 835–842 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Asanuma, Y. et al. Premature coronary-artery atherosclerosis in systemic lupus erythematosus. N. Engl. J. Med. 349, 2407–2415 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Rho, Y. H. et al. Novel cardiovascular risk factors in premature coronary atherosclerosis associated with systemic lupus erythematosus. J. Rheumatol. 35, 1789–1794 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Yiu, K. H. et al. Pattern of arterial calcification in patients with systemic lupus erythematosus. J. Rheumatol. 36, 2212–2217 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Halcox, J. P. et al. Prognostic value of coronary vascular endothelial dysfunction. Circulation 106, 653–658 (2002).

    Article  PubMed  Google Scholar 

  55. Furchgott, R. F. & Zawadzki, J. V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288, 373–376 (1980).

    Article  CAS  PubMed  Google Scholar 

  56. Corretti, M. C. et al. Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the International Brachial Artery Reactivity Task Force. J. Am. Coll. Cardiol. 39, 257–265 (2002).

    Article  PubMed  Google Scholar 

  57. Mak, A., Liu, Y. & Ho, R. C. Endothelium-dependent but not endothelium-independent flow-mediated dilation is significantly reduced in patients with systemic lupus erythematosus without vascular events: a metaanalysis and metaregression. J. Rheumatol. 38, 1296–1303 (2011).

    Article  PubMed  Google Scholar 

  58. Lima, D. S., Sato, E. I., Lima, V. C., Miranda, F. Jr & Hatta, F. H. Brachial endothelial function is impaired in patients with systemic lupus erythematosus. J. Rheumatol. 29, 292–297 (2002).

    PubMed  Google Scholar 

  59. El-Magadmi, M. et al. Systemic lupus erythematosus: an independent risk factor for endothelial dysfunction in women. Circulation 110, 399–404 (2004).

    Article  PubMed  Google Scholar 

  60. Mak, A. et al. Lumbar spine bone mineral density predicts endothelial reactivity in patients with systemic lupus erythematosus. Clin. Exp. Rheumatol. 29, 261–268 (2011).

    CAS  PubMed  Google Scholar 

  61. Asahara, T., Kawamoto, A. & Masuda, H. Concise review: circulating endothelial progenitor cells for vascular medicine. Stem Cells 29, 1650–1655 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Lau, K. K. et al. Incremental predictive value of vascular assessments combined with the Framingham Risk Score for prediction of coronary events in subjects of low-intermediate risk. Postgrad. Med. J. 84, 153–157 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Lau, K. K. et al. Burden of carotid atherosclerosis in patients with stroke: relationships with circulating endothelial progenitor cells and hypertension. J. Hum. Hypertens. 21, 445–451 (2007).

    Article  PubMed  Google Scholar 

  64. Loomans, C. J., De Koning, E. J., Staal, F. J., Rabelink, T. J. & Zonneveld, A. J. Endothelial progenitor cell dysfunction in type 1 diabetes: another consequence of oxidative stress? Antioxid. Redox Signal. 7, 1468–1475 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Moonen, J. R. et al. Reduced number and impaired function of circulating progenitor cells in patients with systemic lupus erythematosus. Arthritis Res. Ther. 9, R84 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Grisar, J. et al. Systemic lupus erythematosus patients exhibit functional deficiencies of endothelial progenitor cells. Rheumatology (Oxford) 47, 1476–1483 (2008).

    Article  CAS  Google Scholar 

  67. Deng, X. L., Li, X. X., Liu, X. Y., Sun, L. & Liu, R. Comparative study on circulating endothelial progenitor cells in systemic lupus erythematosus patients at active stage. Rheumatol. Int. 30, 1429–1436 (2010).

    Article  PubMed  Google Scholar 

  68. Hibbert, B. et al. Pre-procedural atorvastatin mobilizes endothelial progenitor cells: clues to the salutary effects of statins on healing of stented human arteries. PLoS One 6, e16413 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Grisar, J. et al. Endothelial progenitor cells in active rheumatoid arthritis: effects of tumour necrosis factor and glucocorticoid therapy. Ann. Rheum. Dis. 66, 1284–1288 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Distler, J. H. et al. EULAR Scleroderma Trials and Research group statement and recommendations on endothelial precursor cells. Ann. Rheum. Dis. 68, 163–168 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Devarajan, P. Neutrophil gelatinase-associated lipocalin (NGAL): a new marker of kidney disease. Scand. J. Clin. Lab. Invest. Suppl. 241, 89–94 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pitashny, M. et al. Urinary lipocalin-2 is associated with renal disease activity in human lupus nephritis. Arthritis Rheum. 56, 1894–1903 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Nielsen, B. S. et al. Induction of NGAL synthesis in epithelial cells of human colorectal neoplasia and inflammatory bowel diseases. Gut 38, 414–420 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wu, T. et al. Elevated urinary VCAM-1, P-selectin, soluble TNF receptor-1, and CXC chemokine ligand 16 in multiple murine lupus strains and human lupus nephritis. J. Immunol. 179, 7166–7175 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Abd-Elkareem, M. I., Al Tamimy, H. M., Khamis, O. A., Abdellatif, S. S. & Hussein, M. R. Increased urinary levels of the leukocyte adhesion molecules ICAM-1 and VCAM-1 in human lupus nephritis with advanced renal histological changes: preliminary findings. Clin. Exp. Nephrol. 14, 548–557 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Kiani, A. N. et al. Urinary vascular cell adhesion molecule, but not neutrophil gelatinase-associated lipocalin, is associated with lupus nephritis. J. Rheumatol. 39, 1231–1237 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Ikeda, Y., Fujimoto, T., Ameno, M., Shiiki, H. & Dohi, K. Relationship between lupus nephritis activity and the serum level of soluble VCAM-1. Lupus 7, 347–354 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. Spronk, P. E., Bootsma, H., Huitema, M. G., Limburg, P. C. & Kallenberg, C. G. Levels of soluble VCAM-1, soluble ICAM-1, and soluble E-selectin during disease exacerbations in patients with systemic lupus erythematosus (SLE); a long term prospective study. Clin. Exp. Immunol. 97, 439–444 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Avihingsanon, Y. et al. Measurement of urinary chemokine and growth factor messenger RNAs: a noninvasive monitoring in lupus nephritis. Kidney Int. 69, 747–753 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Reyes-Thomas, J., Blanco, I. & Putterman, C. Urinary biomarkers in lupus nephritis. Clin. Rev. Allergy Immunol. 40, 138–150 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Schwartz, N. et al. Urinary TWEAK and the activity of lupus nephritis. J. Autoimmun. 27, 242–250 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Varghese, S. A. et al. Urine biomarkers predict the cause of glomerular disease. J. Am. Soc. Nephrol. 18, 913–922 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Suzuki, M. et al. Initial validation of a novel protein biomarker panel for active pediatric lupus nephritis. Pediatr. Res. 65, 530–536 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhang, X. et al. Biomarkers of lupus nephritis determined by serial urine proteomics. Kidney Int. 74, 799–807 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cauley, J. A. et al. Clinical risk factors for fractures in multi-ethnic women: the Women's Health Initiative. J. Bone Miner. Res. 22, 1816–1826 (2007).

    Article  PubMed  Google Scholar 

  86. van den Bergh, J. P., van Geel, T. A., Lems, W. F. & Geusens, P. P. Assessment of individual fracture risk: FRAX and beyond. Curr. Osteoporos. Rep. 8, 131–137 (2010).

    PubMed  PubMed Central  Google Scholar 

  87. Fraser, L. A. et al. Fracture prediction and calibration of a Canadian FRAX(R.) tool: a population-based report from CaMos. Osteoporos. Int. 22, 829–837 (2011).

    Article  PubMed  Google Scholar 

  88. Mak, A., Lim, J. Q., Liu, Y., Cheak, A. A. & Ho, R. C. Significantly higher estimated 10-year probability of fracture in lupus patients with bone mineral density comparable to that of healthy individuals. Rheumatol. Int. http://dx.doi.org/10.1007/s00296-012-2389-1.

  89. Mok, C. C. et al. Raloxifene for prevention of glucocorticoid-induced bone loss: a 12-month randomised double-blinded placebo-controlled trial. Ann. Rheum. Dis. 70, 778–784 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Baker-LePain, J. C., Nakamura, M. C., Shepherd, J. & von Scheven, E. Assessment of bone remodelling in childhood-onset systemic lupus erythematosus. Rheumatology (Oxford) 50, 611–619 (2011).

    Article  Google Scholar 

  91. Abu-Shakra, M., Urowitz, M. B., Gladman, D. D. & Gough, J. Mortality studies in systemic lupus erythematosus. Results from a single center. I. Causes of death. J. Rheumatol. 22, 1259–1264 (1995).

    CAS  PubMed  Google Scholar 

  92. Manger, K. et al. Definition of risk factors for death, end stage renal disease, and thromboembolic events in a monocentric cohort of 338 patients with systemic lupus erythematosus. Ann. Rheum. Dis. 61, 1065–1070 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Mok, C. C., Mak, A., Chu, W. P., To, C. H. & Wong, S. N. Long-term survival of southern Chinese patients with systemic lupus erythematosus: a prospective study of all age-groups. Medicine (Baltimore) 84, 218–224 (2005).

    Article  Google Scholar 

  94. Cervera, R. et al. Morbidity and mortality in systemic lupus erythematosus during a 10-year period: a comparison of early and late manifestations in a cohort of 1,000 patients. Medicine (Baltimore) 82, 299–308 (2003).

    Article  Google Scholar 

  95. Ruiz-Irastorza, G., Egurbide, M. V., Ugalde, J. & Aguirre, C. High impact of antiphospholipid syndrome on irreversible organ damage and survival of patients with systemic lupus erythematosus. Arch. Intern. Med. 164, 77–82 (2004).

    Article  PubMed  Google Scholar 

  96. Bernatsky, S. et al. Mortality in systemic lupus erythematosus. Arthritis Rheum. 54, 2550–2557 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Nossent, J. et al. Current causes of death in systemic lupus erythematosus in Europe, 2000--2004: relation to disease activity and damage accrual. Lupus 16, 309–317 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Urowitz, M. B., Gladman, D. D., Tom, B. D., Ibanez, D. & Farewell, V. T. Changing patterns in mortality and disease outcomes for patients with systemic lupus erythematosus. J. Rheumatol. 35, 2152–2158 (2008).

    Article  PubMed  Google Scholar 

  99. Kang, K. Y. et al. The causes of death in Korean patients with systemic lupus erythematosus over 11 years. Lupus 20, 989–997 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Mr Tao Ren, a PhD student at the National University of Singapore, for his editorial assistance and for providing critical comments on the draft of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

A. Mak researched the data for the article. All authors contributed substantially to discussion of content, writing, reviewing and editing of the manuscript before submission.

Corresponding author

Correspondence to Anselm Mak.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mak, A., Isenberg, D. & Lau, CS. Global trends, potential mechanisms and early detection of organ damage in SLE. Nat Rev Rheumatol 9, 301–310 (2013). https://doi.org/10.1038/nrrheum.2012.208

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2012.208

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing