Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Syndecans in cartilage breakdown and synovial inflammation

Abstract

Syndecans are transmembrane heparan sulphate proteoglycans (HSPGs) that have gained increasing interest as regulators of a variety of tissue responses, including cartilage development and remodelling. These proteoglycans are composed of a core protein to which extracellular glycosaminoglycan (GAG) chains are attached. Through these GAG chains, syndecans can interact with a variety of extracellular matrix molecules and bind to a number of soluble mediators including morphogens, growth factors, chemokines and cytokines. The structure and post-translational modification of syndecan GAG chains seem to differ not only from cell to cell, but also during different stages of cellular differentiation, leading to a complexity of syndecan function that is unique among membrane-bound HSPGs. Unlike other membrane-bound HSPGs, syndecans contain intracellular signalling motifs that can initiate signalling mainly through protein kinase C. This Review summarizes our knowledge of the biology of syndecans and the mechanisms by which binding of molecules to syndecans exert different biological effects, particularly in the joints. On the basis of the structural and functional peculiarities of syndecans, we discuss the regulation of syndecans and their roles in the developing joint as well as during degenerative and inflammatory cartilage remodelling as understood from expression studies and functional analyses involving syndecan-deficient mice.

Key Points

  • The transmembrane heparan sulphate proteoglycans of the syndecan family have been found to regulate various cellular processes in joint development and pathology

  • The variety of syndecan functions is attributable, in part, to the highly variable structure of GAG chains and consequently to diverse syndecan–ligand interactions, as well as to the specific expression pattern of each syndecan

  • One singularity of syndecans, compared with other membrane-bound heparan sulphate proteoglycans, is the possibility of independent signal transduction owing to their having intracellular signalling domains

  • These unique features make syndecans important for cartilage development and degenerative and inflammatory joint pathology

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Members and structure of the syndecan family of transmembrane heparan sulphate proteoglycans.
Figure 2: Structure and assembly of the GAG side chains of syndecans.
Figure 3: Hypothetical molecular states of syndecans.
Figure 4: Fibronectin-induced integrin-dependent signalling pathways.
Figure 5: Model of SYND4-induced aggrecan cleavage in osteoarthritis.

Similar content being viewed by others

References

  1. Vincent, T. L., McLean, C. J., Full, L. E., Peston, D. & Saklatvala, J. FGF-2 is bound to perlecan in the pericellular matrix of articular cartilage, where it acts as a chondrocyte mechanotransducer. Osteoarthritis Cartilage 15, 752–763 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Deepa, S. S., Yamada, S., Zako, M., Goldberger, O. & Sugahara, K. Chondroitin sulfate chains on syndecan-1 and syndecan-4 from normal murine mammary gland epithelial cells are structurally and functionally distinct and cooperate with heparan sulfate chains to bind growth factors. A novel function to control binding of midkine, pleiotrophin, and basic fibroblast growth factor. J. Biol. Chem. 279, 37368–37376 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Tkachenko, E., Rhodes, J. M. & Simons, M. Syndecans: new kids on the signaling block. Circ. Res. 96, 488–500 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Choi, Y., Chung, H., Jung, H., Couchman, J. R. & Oh, E. S. Syndecans as cell surface receptors: Unique structure equates with functional diversity. Matrix Biol. 30, 93–99 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Couchman, J. R. Transmembrane signaling proteoglycans. Annu. Rev. Cell Dev. Biol. 26, 89–114 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Kim, C. W., Goldberger, O. A., Gallo, R. L. & Bernfield, M. Members of the syndecan family of heparan sulfate proteoglycans are expressed in distinct cell-, tissue-, and development-specific patterns. Mol. Biol. Cell 5, 797–805 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sutherland, A. E. et al. Expression of syndecan, a putative low affinity fibroblast growth factor receptor, in the early mouse embryo. Development 113, 339–351 (1991).

    CAS  PubMed  Google Scholar 

  8. Kato, M., Saunders, S., Nguyen, H. & Bernfield, M. Loss of cell surface syndecan-1 causes epithelia to transform into anchorage-independent mesenchyme-like cells. Mol. Biol. Cell 6, 559–576 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Salminen-Mankonen, H., Saamanen, A. M., Jalkanen, M., Vuorio, E. & Pirila, L. Syndecan-1 expression is upregulated in degenerating articular cartilage in a transgenic mouse model for osteoarthritis. Scand. J. Rheumatol. 34, 469–474 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. David, G. et al. Spatial and temporal changes in the expression of fibroglycan (syndecan-2) during mouse embryonic development. Development 119, 841–854 (1993).

    CAS  PubMed  Google Scholar 

  11. Granes, F. et al. Syndecan-2 induces filopodia by active cdc42Hs. Exp. Cell Res. 248, 439–456 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Klass, C. M., Couchman, J. R. & Woods, A. Control of extracellular matrix assembly by syndecan-2 proteoglycan. J. Cell Sci. 113 (Pt 3), 493–506 (2000).

    CAS  PubMed  Google Scholar 

  13. Woods, A. & Couchman, J. R. Syndecan-4 and focal adhesion function. Curr. Opin. Cell Biol. 13, 578–583 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Kramer, K. L. & Yost, H. J. Ectodermal syndecan-2 mediates left–right axis formation in migrating mesoderm as a cell-nonautonomous Vg1 cofactor. Dev. Cell 2, 115–124 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Bernfield, M., Hinkes, M. T. & Gallo, R. L. Developmental expression of the syndecans: possible function and regulation. Dev. Suppl. 1993, 205–212 (1993).

    Google Scholar 

  16. Gould, S. E., Upholt, W. B. & Kosher, R. A. Characterization of chicken syndecan-3 as a heparan sulfate proteoglycan and its expression during embryogenesis. Dev. Biol. 168, 438–451 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Carey, D. J. et al. Molecular cloning and characterization of N-syndecan, a novel transmembrane heparan sulfate proteoglycan. J. Cell Biol. 117, 191–201 (1992).

    Article  CAS  PubMed  Google Scholar 

  18. Cizmeci-Smith, G., Langan, E., Youkey, J., Showalter, L. J. & Carey, D. J. Syndecan-4 is a primary-response gene induced by basic fibroblast growth factor and arterial injury in vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 17, 172–180 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Elenius, K. & Jalkanen, M. Function of the syndecans—a family of cell surface proteoglycans. J. Cell Sci. 107 (Pt 11), 2975–2982 (1994).

    CAS  PubMed  Google Scholar 

  20. Gallo, R. L. et al. Syndecans, cell surface heparan sulfate proteoglycans, are induced by a proline-rich antimicrobial peptide from wounds. Proc. Natl Acad. Sci. USA 91, 11035–11039 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kainulainen, V., Wang, H., Schick, C. & Bernfield, M. Syndecans, heparan sulfate proteoglycans, maintain the proteolytic balance of acute wound fluids. J. Biol. Chem. 273, 11563–11569 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Jaakkola, P., Maatta, A. & Jalkanen, M. The activation and composition of FiRE (an FGF-inducible response element) differ in a cell type- and growth factor-specific manner. Oncogene 17, 1279–1286 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Wang, J. et al. TNF-α and IL-1β promote a disintegrin-like and metalloprotease with thrombospondin type I motif-5-mediated aggrecan degradation through syndecan-4 in intervertebral disc. J. Biol. Chem. 286, 39738–39749 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Oh, E. S. & Couchman, J. R. Syndecans-2 and -4; close cousins, but not identical twins. Mol. Cells 17, 181–187 (2004).

    CAS  PubMed  Google Scholar 

  25. Esko, J. D. & Selleck, S. B. Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu. Rev. Biochem. 71, 435–471 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Gotte, M. et al. Changes in heparan sulfate are associated with delayed wound repair, altered cell migration, adhesion and contractility in the galactosyltransferase I (β4GalT-7) deficient form of Ehlers–Danlos syndrome. Hum. Mol. Genet. 17, 996–1009 (2008).

    Article  PubMed  CAS  Google Scholar 

  27. Faiyaz-Ul-Haque, M. et al. A novel missense mutation in the galactosyltransferase-I (B4GALT7) gene in a family exhibiting facioskeletal anomalies and Ehlers–Danlos syndrome resembling the progeroid type. Am. J. Med. Genet. A 128A, 39–45 (2004).

    Article  PubMed  Google Scholar 

  28. Kresse, H. et al. Glycosaminoglycan-free small proteoglycan core protein is secreted by fibroblasts from a patient with a syndrome resembling progeroid. Am. J. Hum. Genet. 41, 436–453 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Stickens, D., Brown, D. & Evans, G. A. EXT genes are differentially expressed in bone and cartilage during mouse embryogenesis. Dev. Dyn. 218, 452–464 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Koziel, L., Kunath, M., Kelly, O. G. & Vortkamp, A. Ext1-dependent heparan sulfate regulates the range of Ihh signaling during endochondral ossification. Dev. Cell 6, 801–813 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Raman, K., Nguyen, T. K. & Kuberan, B. Is N-sulfation just a gateway modification during heparan sulfate biosynthesis? FEBS Lett. 585, 3420–3423 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Brickman, Y. G. et al. Structural modification of fibroblast growth factor-binding heparan sulfate at a determinative stage of neural development. J. Biol. Chem. 273, 4350–4359 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Jayson, G. C. et al. Heparan sulfate undergoes specific structural changes during the progression from human colon adenoma to carcinoma in vitro. J. Biol. Chem. 273, 51–57 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Safaiyan, F., Lindahl, U. & Salmivirta, M. Selective reduction of 6-O-sulfation in heparan sulfate from transformed mammary epithelial cells. Eur. J. Biochem. 252, 576–582 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Dhoot, G. K. et al. Regulation of Wnt signaling and embryo patterning by an extracellular sulfatase. Science 293, 1663–1666 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Morimoto-Tomita, M., Uchimura, K., Werb, Z., Hemmerich, S. & Rosen, S. D. Cloning and characterization of two extracellular heparin-degrading endosulfatases in mice and humans. J. Biol. Chem. 277, 49175–49185 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Ohto, T. et al. Identification of a novel nonlysosomal sulphatase expressed in the floor plate, choroid plexus and cartilage. Genes Cells 7, 173–185 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Ai, X. et al. QSulf1 remodels the 6-O sulfation states of cell surface heparan sulfate proteoglycans to promote Wnt signaling. J. Cell Biol. 162, 341–351 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ai, X. et al. SULF1 and SULF2 regulate heparan sulfate-mediated GDNF signaling for esophageal innervation. Development 134, 3327–3338 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Holst, C. R. et al. Secreted sulfatases Sulf1 and Sulf2 have overlapping yet essential roles in mouse neonatal survival. PLoS ONE 2, e575 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Narita, K. et al. Loss of HSulf-1 expression enhances autocrine signaling mediated by amphiregulin in breast cancer. J. Biol. Chem. 282, 14413–14420 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Nawroth, R. et al. Extracellular sulfatases, elements of the Wnt signaling pathway, positively regulate growth and tumorigenicity of human pancreatic cancer cells. PLoS ONE 2, e392 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Wang, S. et al. QSulf1, a heparan sulfate 6-O-endosulfatase, inhibits fibroblast growth factor signaling in mesoderm induction and angiogenesis. Proc. Natl Acad. Sci. USA 101, 4833–4838 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Otsuki, S. et al. Expression of novel extracellular sulfatases Sulf-1 and Sulf-2 in normal and osteoarthritic articular cartilage. Arthritis Res. Ther. 10, R61 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Viviano, B. L., Paine-Saunders, S., Gasiunas, N., Gallagher, J. & Saunders, S. Domain-specific modification of heparan sulfate by Qsulf1 modulates the binding of the bone morphogenetic protein antagonist Noggin. J. Biol. Chem. 279, 5604–5611 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Otsuki, S. et al. Extracellular sulfatases support cartilage homeostasis by regulating BMP and FGF signaling pathways. Proc. Natl Acad. Sci. USA 107, 10202–10207 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kato, M., Wang, H., Bernfield, M., Gallagher, J. T. & Turnbull, J. E. Cell surface syndecan-1 on distinct cell types differs in fine structure and ligand binding of its heparan sulfate chains. J. Biol. Chem. 269, 18881–18890 (1994).

    CAS  PubMed  Google Scholar 

  48. Grzesik, W. J. et al. Age-related changes in human bone proteoglycan structure. Impact of osteogenesis imperfecta. J. Biol. Chem. 277, 43638–43647 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Woods, A., Longley, R. L., Tumova, S. & Couchman, J. R. Syndecan-4 binding to the high affinity heparin-binding domain of fibronectin drives focal adhesion formation in fibroblasts. Arch. Biochem. Biophys. 374, 66–72 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Faham, S., Hileman, R. E., Fromm, J. R., Linhardt, R. J. & Rees, D. C. Heparin structure and interactions with basic fibroblast growth factor. Science 271, 1116–11120 (1996).

    Article  CAS  PubMed  Google Scholar 

  51. Petitou, M., Casu, B. & Lindahl, U. 1976–1983, a critical period in the history of heparin: the discovery of the antithrombin binding site. Biochimie 85, 83–89 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Schlessinger, J. et al. Crystal structure of a ternary FGF–FGFR–heparin complex reveals a dual role for heparin in FGFR binding and dimerization. Mol. Cell 6, 743–750 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Cardin, A. D. & Weintraub, H. J. Molecular modeling of protein-glycosaminoglycan interactions. Arteriosclerosis 9, 21–32 (1989).

    Article  CAS  PubMed  Google Scholar 

  54. Munoz, E. M. & Linhardt, R. J. Heparin-binding domains in vascular biology. Arterioscler. Thromb. Vasc. Biol. 24, 1549–1557 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Huang, W., Chiquet-Ehrismann, R., Moyano, J. V., Garcia-Pardo, A. & Orend, G. Interference of tenascin-C with syndecan-4 binding to fibronectin blocks cell adhesion and stimulates tumor cell proliferation. Cancer Res. 61, 8586–8594 (2001).

    CAS  PubMed  Google Scholar 

  56. Orend, G., Huang, W., Olayioye, M. A., Hynes, N. E. & Chiquet-Ehrismann, R. Tenascin-C blocks cell-cycle progression of anchorage-dependent fibroblasts on fibronectin through inhibition of syndecan-4. Oncogene 22, 3917–3926 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Hasegawa, M. et al. Expression of large tenascin-C splice variants in synovial fluid of patients with rheumatoid arthritis. J. Orthop. Res. 25, 563–568 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Rinaldi, N. et al. Increased expression of integrins on fibroblast-like synoviocytes from rheumatoid arthritis in vitro correlates with enhanced binding to extracellular matrix proteins. Ann. Rheum. Dis. 56, 45–51 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Brule, S. et al. Glycosaminoglycans and syndecan-4 are involved in SDF-1/CXCL12-mediated invasion of human epitheloid carcinoma HeLa cells. Biochim. Biophys. Acta. 1790, 1643–1650 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Jiang, D. et al. Inhibition of pulmonary fibrosis in mice by CXCL10 requires glycosaminoglycan binding and syndecan-4. J. Clin. Invest. 120, 2049–2057 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Endres, M. et al. Chemokine profile of synovial fluid from normal, osteoarthritis and rheumatoid arthritis patients: CCL25, CXCL10 and XCL1 recruit human subchondral mesenchymal progenitor cells. Osteoarthritis Cartilage 18, 1458–1466 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Santiago, B. et al. CXCL12γ isoform is expressed on endothelial and dendritic cells in rheumatoid arthritis synovium and regulates T cell activation. Arthritis Rheum. 64, 409–417 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. Ryu, H. Y. et al. Syndecan-2 functions as a docking receptor for pro-matrix metalloproteinase-7 in human colon cancer cells. J. Biol. Chem. 284, 35692–35701 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Vuoriluoto, K., Hognas, G., Meller, P., Lehti, K. & Ivaska, J. Syndecan-1 and -4 differentially regulate oncogenic K-ras dependent cell invasion into collagen through α2β1 integrin and MT1-MMP. Matrix Biol. 30, 207–217 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Munesue, S. et al. A novel function of syndecan-2, suppression of matrix metalloproteinase-2 activation, which causes suppression of metastasis. J. Biol. Chem. 282, 28164–28174 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Jeong, S. Y., Kim, B. Y., Kim, H. J., Yang, J. A. & Kim, O. H. A novel homozygous MMP2 mutation in a patient with Torg–Winchester syndrome. J. Hum. Genet. 55, 764–766 (2010).

    Article  PubMed  Google Scholar 

  67. Gao, G. et al. ADAMTS4 (aggrecanase-1) activation on the cell surface involves C-terminal cleavage by glycosylphosphatidyl inositol-anchored membrane type 4-matrix metalloproteinase and binding of the activated proteinase to chondroitin sulfate and heparan sulfate on syndecan-1. J. Biol. Chem. 279, 10042–10051 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Echtermeyer, F. et al. Syndecan-4 regulates ADAMTS-5 activation and cartilage breakdown in osteoarthritis. Nat. Med. 15, 1072–1076 (2009).

    Article  CAS  PubMed  Google Scholar 

  69. Thodeti, C. K. et al. ADAM12/syndecan-4 signaling promotes β1 integrin-dependent cell spreading through protein kinase Cα and RhoA. J. Biol. Chem. 278, 9576–9584 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Choi, S. et al. The matrix metalloproteinase-7 regulates the extracellular shedding of syndecan-2 from colon cancer cells. Biochem. Biophys. Res. Commun. 417, 1260–1264 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Fitzgerald, M. L., Wang, Z., Park, P. W., Murphy, G. & Bernfield, M. Shedding of syndecan-1 and -4 ectodomains is regulated by multiple signaling pathways and mediated by a TIMP-3-sensitive metalloproteinase. J. Cell. Biol. 148, 811–824 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Li, L. et al. Regulation of syndecan-4 expression with mechanical stress during the development of angioplasty-induced intimal thickening. J. Vasc. Surg. 36, 361–370 (2002).

    Article  PubMed  Google Scholar 

  73. Subramanian, S. V., Fitzgerald, M. L. & Bernfield, M. Regulated shedding of syndecan-1 and -4 ectodomains by thrombin and growth factor receptor activation. J. Biol. Chem. 272, 14713–14720 (1997).

    Article  CAS  PubMed  Google Scholar 

  74. Schmidt, A., Echtermeyer, F., Alozie, A., Brands, K. & Buddecke, E. Plasmin- and thrombin-accelerated shedding of syndecan-4 ectodomain generates cleavage sites at Lys114–Arg115 and Lys129–Val130 bonds. J. Biol. Chem. 280, 34441–34446 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Brule, S. et al. The shedding of syndecan-4 and syndecan-1 from HeLa cells and human primary macrophages is accelerated by SDF-1/CXCL12 and mediated by the matrix metalloproteinase-9. Glycobiology 16, 488–501 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Pruessmeyer, J. et al. A disintegrin and metalloproteinase 17 (ADAM17) mediates inflammation-induced shedding of syndecan-1 and -4 by lung epithelial cells. J. Biol. Chem. 285, 555–564 (2011).

    Article  CAS  Google Scholar 

  77. Rodriguez-Manzaneque, J. C. et al. Cleavage of syndecan-4 by ADAMTS1 provokes defects in adhesion. Int. J. Biochem. Cell Biol. 41, 800–810 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Endo, K. et al. Cleavage of syndecan-1 by membrane type matrix metalloproteinase-1 stimulates cell migration. J. Biol. Chem. 278, 40764–40770 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Fears, C. Y., Gladson, C. L. & Woods, A. Syndecan-2 is expressed in the microvasculature of gliomas and regulates angiogenic processes in microvascular endothelial cells. J. Biol. Chem. 281, 14533–14536 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Nikolova, V. et al. Differential roles for membrane-bound and soluble syndecan-1 (CD138) in breast cancer progression. Carcinogenesis 30, 397–407 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Seidel, C. et al. Serum syndecan-1: a new independent prognostic marker in multiple myeloma. Blood 95, 388–392 (2000).

    CAS  PubMed  Google Scholar 

  82. Su, G., Blaine, S. A., Qiao, D. & Friedl, A. Membrane type 1 matrix metalloproteinase-mediated stromal syndecan-1 shedding stimulates breast carcinoma cell proliferation. Cancer Res. 68, 9558–9565 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Beauvais, D. M., Ell, B. J., McWhorter, A. R. & Rapraeger, A. C. Syndecan-1 regulates αvβ3 and αvβ5 integrin activation during angiogenesis and is blocked by synstatin, a novel peptide inhibitor. J. Exp. Med. 206, 691–705 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Spivak-Kroizman, T. et al. Heparin-induced oligomerization of FGF molecules is responsible for FGF receptor dimerization, activation, and cell proliferation. Cell 79, 1015–1024 (1994).

    Article  CAS  PubMed  Google Scholar 

  85. Yayon, A., Klagsbrun, M., Esko, J. D., Leder, P. & Ornitz, D. M. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 64, 841–848 (1991).

    Article  CAS  PubMed  Google Scholar 

  86. Li, X. et al. Species-specific biological effects of FGF-2 in articular cartilage: implication for distinct roles within the FGF receptor family. J. Cell. Biochem. 113, 2532–2542 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Fujise, M. et al. Dally regulates Dpp morphogen gradient formation in the Drosophila wing. Development 130, 1515–1522 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Teleman, A. A. & Cohen, S. M. Dpp gradient formation in the Drosophila wing imaginal disc. Cell 103, 971–980 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Asundi, V. K. & Carey, D. J. Self-association of N-syndecan (syndecan-3) core protein is mediated by a novel structural motif in the transmembrane domain and ectodomain flanking region. J. Biol. Chem. 270, 26404–26410 (1995).

    Article  CAS  PubMed  Google Scholar 

  90. Couchman, J. R., Chen, L. & Woods, A. Syndecans and cell adhesion. Int. Rev. Cytol. 207, 113–150 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Lee, D., Oh, E. S., Woods, A., Couchman, J. R. & Lee, W. Solution structure of a syndecan-4 cytoplasmic domain and its interaction with phosphatidylinositol 4,5-bisphosphate. J. Biol. Chem. 273, 13022–13029 (1998).

    Article  CAS  PubMed  Google Scholar 

  92. Shin, J. et al. Solution structure of the dimeric cytoplasmic domain of syndecan-4. Biochemistry 40, 8471–8478 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Spitaler, M. & Cantrell, D. A. Protein kinase C and beyond. Nat. Immunol. 5, 785–790 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Bass, M. D. et al. Syndecan-4-dependent Rac1 regulation determines directional migration in response to the extracellular matrix. J. Cell Biol. 177, 527–538 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Echtermeyer, F. et al. Delayed wound repair and impaired angiogenesis in mice lacking syndecan-4. J. Clin. Invest. 107, R9–R14 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bass, M. D. et al. A syndecan-4 hair trigger initiates wound healing through caveolin- and RhoG-regulated integrin endocytosis. Dev. Cell 21, 681–693 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Fukui, N. et al. αvβ5 integrin promotes dedifferentiation of monolayer-cultured articular chondrocytes. Arthritis Rheum. 63, 1938–1949 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Pulai, J. I., Del Carlo, M., Jr. & Loeser, R. F. The α5β1 integrin provides matrix survival signals for normal and osteoarthritic human articular chondrocytes in vitro. Arthritis Rheum. 46, 1528–1535 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Forsyth, C. B., Pulai, J. & Loeser, R. F. Fibronectin fragments and blocking antibodies to α2β1 and α5β1 integrins stimulate mitogen-activated protein kinase signaling and increase collagenase 3 (matrix metalloproteinase 13) production by human articular chondrocytes. Arthritis Rheum. 46, 2368–2376 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Bass, M. D., Morgan, M. R. & Humphries, M. J. Integrins and syndecan-4 make distinct, but critical, contributions to adhesion contact formation. Soft Matter 3, 372–376 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Humphries, M. J. et al. Integrin-syndecan cooperation governs the assembly of signalling complexes during cell spreading. Novartis Found. Symp. 269, 178–188 (2005).

    CAS  PubMed  Google Scholar 

  102. Xia, M. & Zhu, Y. Fibronectin fragment activation of ERK increasing integrin α and β subunit expression to degenerate nucleus pulposus cells. J. Orthop. Res. 29, 556–561 (2011).

    Article  CAS  PubMed  Google Scholar 

  103. Oh, E. S., Couchman, J. R. & Woods, A. Serine phosphorylation of syndecan-2 proteoglycan cytoplasmic domain. Arch. Biochem. Biophys. 344, 67–74 (1997).

    Article  CAS  PubMed  Google Scholar 

  104. Arrington, C. B. & Yost, H. J. Extra-embryonic syndecan 2 regulates organ primordia migration and fibrillogenesis throughout the zebrafish embryo. Development 136, 3143–3152 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Galante, L. L. & Schwarzbauer, J. E. Requirements for sulfate transport and the diastrophic dysplasia sulfate transporter in fibronectin matrix assembly. J. Cell Biol. 179, 999–1009 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Solursh, M., Reiter, R. S., Jensen, K. L., Kato, M. & Bernfield, M. Transient expression of a cell surface heparan sulfate proteoglycan (syndecan) during limb development. Dev. Biol. 140, 83–92 (1990).

    Article  CAS  PubMed  Google Scholar 

  107. Gould, S. E., Upholt, W. B. & Kosher, R. A. Syndecan 3: a member of the syndecan family of membrane-intercalated proteoglycans that is expressed in high amounts at the onset of chicken limb cartilage differentiation. Proc. Natl Acad. Sci. USA 89, 3271–3275 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Koyama, E., Leatherman, J. L., Shimazu, A., Nah, H. D. & Pacifici, M. Syndecan-3, tenascin-C, and the development of cartilaginous skeletal elements and joints in chick limbs. Dev. Dyn. 203, 152–162 (1995).

    Article  CAS  PubMed  Google Scholar 

  109. Shimazu, A. et al. Syndecan-3 and the control of chondrocyte proliferation during endochondral ossification. Exp. Cell Res. 229, 126–136 (1996).

    Article  CAS  PubMed  Google Scholar 

  110. Seghatoleslami, M. R. & Kosher, R. A. Inhibition of in vitro limb cartilage differentiation by syndecan-3 antibodies. Dev. Dyn. 207, 114–119 (1996).

    Article  CAS  PubMed  Google Scholar 

  111. Shimo, T. et al. Indian hedgehog and syndecans-3 coregulate chondrocyte proliferation and function during chick limb skeletogenesis. Dev. Dyn. 229, 607–617 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. Chang, S. C., Mulloy, B., Magee, A. I. & Couchman, J. R. Two distinct sites in sonic hedgehog combine for heparan sulfate interactions and cell signaling functions. J. Biol. Chem. 286, 44391–44402 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Whitelock, J. M. & Iozzo, R. V. Heparan sulfate: a complex polymer charged with biological activity. Chem. Rev. 105, 2745–2764 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. Alexander, C. M. et al. Syndecan-1 is required for Wnt-1-induced mammary tumorigenesis in mice. Nat. Genet. 25, 329–332 (2000).

    Article  CAS  PubMed  Google Scholar 

  115. Fuerer, C., Habib, S. J. & Nusse, R. A study on the interactions between heparan sulfate proteoglycans and Wnt proteins. Dev. Dyn. 239, 184–190 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Reichsman, F., Smith, L. & Cumberledge, S. Glycosaminoglycans can modulate extracellular localization of the wingless protein and promote signal transduction. J. Cell Biol. 135, 819–827 (1996).

    Article  CAS  PubMed  Google Scholar 

  117. O'Connell, M. P. et al. Heparan sulfate proteoglycan modulation of Wnt5A signal transduction in metastatic melanoma cells. J. Biol. Chem. 284, 28704–28712 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Liu, B. Y., Kim, Y. C., Leatherberry, V., Cowin, P. & Alexander, C. M. Mammary gland development requires syndecan-1 to create a β-catenin/TCF-responsive mammary epithelial subpopulation. Oncogene 22, 9243–9253 (2003).

    Article  CAS  PubMed  Google Scholar 

  119. Munoz, R., Moreno, M., Oliva, C., Orbenes, C. & Larrain, J. Syndecan-4 regulates non-canonical Wnt signalling and is essential for convergent and extension movements in Xenopus embryos. Nat. Cell. Biol. 8, 492–500 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. Luyten, A. et al. The postsynaptic density 95/disc-large/zona occludens protein syntenin directly interacts with Frizzled 7 and supports noncanonical Wnt signaling. Mol. Biol. Cell 19, 1594–1604 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ohkawara, B., Glinka, A. & Niehrs, C. Rspo3 binds syndecan 4 and induces Wnt/PCP signaling via clathrin-mediated endocytosis to promote morphogenesis. Dev. Cell 20, 303–314 (2011).

    Article  CAS  PubMed  Google Scholar 

  122. Chen, Y., Stump, R. J., Lovicu, F. J. & McAvoy, J. W. A role for Wnt/planar cell polarity signaling during lens fiber cell differentiation? Semin. Cell Dev. Biol. 17, 712–725 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kuriyama, S. & Mayor, R. A role for syndecan-4 in neural induction involving ERK- and PKC-dependent pathways. Development 136, 575–584 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. LeClair, E. E., Mui, S. R., Huang, A., Topczewska, J. M. & Topczewski, J. Craniofacial skeletal defects of adult zebrafish Glypican 4 (knypek) mutants. Dev. Dyn. 238, 2550–2563 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Wiweger, M. I. et al. Cartilage ultrastructure in proteoglycan-deficient zebrafish mutants brings to light new candidate genes for human skeletal disorders. J. Pathol. 223, 531–542 (2011).

    Article  PubMed  Google Scholar 

  126. Pilia, G. et al. Mutations in GPC3, a glypican gene, cause the Simpson-Golabi-Behmel overgrowth syndrome. Nat. Genet. 12, 241–247 (1996).

    Article  CAS  PubMed  Google Scholar 

  127. Waterson, J., Stockley, T. L., Segal, S. & Golabi, M. Novel duplication in glypican-4 as an apparent cause of Simpson-Golabi-Behmel syndrome. Am. J. Med. Genet. A 152A, 3179–3181 (2012).

    Article  Google Scholar 

  128. Korb-Pap, A. et al. Early structural changes in cartilage and bone are required for the attachment and invasion of inflamed synovial tissue during destructive inflammatory arthritis. Ann. Rheum. Dis. 71, 1004–1011 (2012).

    Article  CAS  PubMed  Google Scholar 

  129. Barre, P. E., Redini, F., Boumediene, K., Vielpeau, C. & Pujol, J. P. Semiquantitative reverse transcription-polymerase chain reaction analysis of syndecan-1 and -4 messages in cartilage and cultured chondrocytes from osteoarthritic joints. Osteoarthritis Cartilage 8, 34–43 (2000).

    Article  CAS  PubMed  Google Scholar 

  130. Glasson, S. S. et al. Characterization of and osteoarthritis susceptibility in ADAMTS-4-knockout mice. Arthritis Rheum. 50, 2547–2558 (2004).

    Article  CAS  PubMed  Google Scholar 

  131. Stanton, H. et al. ADAMTS5 is the major aggrecanase in mouse cartilage in vivo and in vitro. Nature 434, 648–652 (2005).

    Article  CAS  PubMed  Google Scholar 

  132. Pfander, D., Swoboda, B. & Kirsch, T. Expression of early and late differentiation markers (proliferating cell nuclear antigen, syndecan-3, annexin VI, and alkaline phosphatase) by human osteoarthritic chondrocytes. Am. J. Pathol. 159, 1777–1783 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zhang, Y., Pasparakis, M., Kollias, G. & Simons, M. Myocyte-dependent regulation of endothelial cell syndecan-4 expression. Role of TNF-α. J. Biol. Chem. 274, 14786–14790 (1999).

    Article  CAS  PubMed  Google Scholar 

  134. Clasper, S. et al. Inducible expression of the cell surface heparan sulfate proteoglycan syndecan-2 (fibroglycan) on human activated macrophages can regulate fibroblast growth factor action. J. Biol. Chem. 274, 24113–24123 (1999).

    Article  CAS  PubMed  Google Scholar 

  135. Sebestyen, A. et al. Cytokine regulation of syndecan expression in cells of liver origin. Cytokine 12, 1557–1560 (2000).

    Article  CAS  PubMed  Google Scholar 

  136. Worapamorn, W., Haase, H. R., Li, H. & Bartold, P. M. Growth factors and cytokines modulate gene expression of cell-surface proteoglycans in human periodontal ligament cells. J. Cell. Physiol. 186, 448–456 (2001).

    Article  CAS  PubMed  Google Scholar 

  137. Kainulainen, V. et al. Suppression of syndecan-1 expression in endothelial cells by tumor necrosis factor-α. J. Biol. Chem. 271, 18759–18766 (1996).

    Article  CAS  PubMed  Google Scholar 

  138. Day, R. M., Mitchell, T. J., Knight, S. C. & Forbes, A. Regulation of epithelial syndecan-1 expression by inflammatory cytokines. Cytokine 21, 224–233 (2003).

    Article  CAS  PubMed  Google Scholar 

  139. Gotte, M. Syndecans in inflammation. FASEB J. 17, 575–591 (2003).

    Article  CAS  PubMed  Google Scholar 

  140. Wilkins-Port, C. E., Sanderson, R. D., Tominna-Sebald, E. & McKeown-Longo, P. J. Vitronectin's basic domain is a syndecan ligand which functions in trans to regulate vitronectin turnover. Cell Commun. Adhes. 10, 85–103 (2003).

    CAS  PubMed  Google Scholar 

  141. Bachy, S., Letourneur, F. & Rousselle, P. Syndecan-1 interaction with the LG4/5 domain in laminin-332 is essential for keratinocyte migration. J. Cell. Physiol. 214, 238–249 (2008).

    Article  CAS  PubMed  Google Scholar 

  142. Ogawa, T., Tsubota, Y., Hashimoto, J., Kariya, Y. & Miyazaki, K. The short arm of laminin γ2 chain of laminin-5 (laminin-332) binds syndecan-1 and regulates cellular adhesion and migration by suppressing phosphorylation of integrin β4 chain. Mol. Biol. Cell 18, 1621–1633 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Patterson, A. M. et al. Induction of a CXCL8 binding site on endothelial syndecan-3 in rheumatoid synovium. Arthritis Rheum. 52, 2331–2342 (2005).

    Article  CAS  PubMed  Google Scholar 

  144. Hamon, M. et al. A syndecan-4/CXCR4 complex expressed on human primary lymphocytes and macrophages and HeLa cell line binds the CXC chemokine stromal cell-derived factor-1 (SDF-1). Glycobiology 14, 311–323 (2004).

    Article  CAS  PubMed  Google Scholar 

  145. Sutton, A. et al. Stromal cell-derived factor-1/chemokine (C-X-C motif) ligand 12 stimulates human hepatoma cell growth, migration, and invasion. Mol. Cancer Res. 5, 21–33 (2007).

    Article  CAS  PubMed  Google Scholar 

  146. Charnaux, N. et al. RANTES (CCL5) induces a CCR5-dependent accelerated shedding of syndecan-1 (CD138) and syndecan-4 from HeLa cells and forms complexes with the shed ectodomains of these proteoglycans as well as with those of CD44. Glycobiology 15, 119–130 (2005).

    Article  CAS  PubMed  Google Scholar 

  147. Mukhopadhyay, A. et al. Syndecan-2 and decorin: proteoglycans with a difference—implications in keloid pathogenesis. J. Trauma 68, 999–1008 (2010).

    Article  CAS  PubMed  Google Scholar 

  148. O'Connell, M. P. et al. HSPG modulation of BMP signaling in fibrodysplasia ossificans progressiva cells. J. Cell. Biochem. 102, 1493–503 (2007).

    Article  CAS  PubMed  Google Scholar 

  149. Zhang, L. et al. Molecular interactions of MMP-13 C-terminal domain with chondrocyte proteins. Connect. Tissue Res. 51, 230–239 (2010).

    Article  CAS  PubMed  Google Scholar 

  150. Couchman, J.R. Syndecans: proteoglycan regulators of cell-surface microdomains? Nat. Rev. Mol. Cell Biol. 4, 926–938 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors' work is supported in part by grants from the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) and the German Federal Ministry of Education and Research (Bundesminsterium für Bildung und Forschung, BMBF).

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched the data for the article and provided a substantial contribution to discussions of the content, and contributed equally to writing the article and to review/editing of the manuscript before submission.

Corresponding author

Correspondence to Thomas Pap.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pap, T., Bertrand, J. Syndecans in cartilage breakdown and synovial inflammation. Nat Rev Rheumatol 9, 43–55 (2013). https://doi.org/10.1038/nrrheum.2012.178

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2012.178

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing