Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New methods to diagnose and treat cartilage degeneration

Abstract

Lesions in articular cartilage can result in significant musculoskeletal morbidity and display unique biomechanical characteristics that make repair difficult, at best. Several surgical procedures have been devised in an attempt to relieve pain, restore function, and delay or stop the progression of cartilaginous lesions. Advanced MRI and ultrasonography protocols are currently used in the evaluation of tissue repair and to improve diagnostic capability. Other nonoperative modalities, such as injection of intra-articular hyaluronic acid or supplementary oral glucosamine and chondroitin sulfate, have shown potential efficacy as anti-inflammatory and symptom-modifying agents. The emerging field of tissue engineering, involving the use of a biocompatible, structurally and mechanically stable scaffold, has shown promising early results in cartilage tissue repair. Scaffolds incorporating specific cell sources and bioactive molecules have been the focus in this new exciting field. Further work is required to better understand the behavior of chondrocytes and the variables that influence their ability to heal articular lesions. The future of cartilage repair will probably involve a combination of treatments in an attempt to achieve a regenerative tissue that is both biomechanically stable and, ideally, identical to the surrounding native tissues.

Key Points

  • Cartilage injuries remain a major cause of morbidity in both young and elderly patient populations

  • Advanced imaging with MRI and ultrasonography has resulted in improved sensitivity and specificity in the diagnosis of cartilage injuries

  • Surgical procedures have had some success in alleviating symptoms and improving function; however, the regenerative tissue has not been found to resemble the surrounding native tissue

  • Intra-articular injections of hyaluronic acid, oral glucosamine and oral chondroitin sulfate seem to confer a therapeutic effect via anti-inflammatory-mediated mechanisms

  • Tissue engineering involving scaffolds, bioactive molecules and specific cell lines has shown promising results in the treatment of cartilage defects

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Intra-operative photographs illustrating various surgical techniques commonly performed in the treatment of articular cartilage lesions involving the femoral condyle.
Figure 2: Strategies for cartilage tissue engineering.
Figure 3: Microenvironment of chondrocytes: fiber reinforcement.
Figure 4: Use of gene therapy in cartilage repair.

Similar content being viewed by others

References

  1. Evans, P. J., Miniaci, A. & Hurtig, M. B. Manual punch versus power harvesting of osteochondral grafts. Arthroscopy 20, 306–310 (2004).

    Article  Google Scholar 

  2. Mithoefer, K. et al. The microfracture technique for the treatment of articular cartilage lesions in the knee. A prospective cohort study. J. Bone Joint Surg. Am. 87, 1911–1920 (2005).

    Article  Google Scholar 

  3. Hangody, L., Feczko, P., Bartha, L., Bodo, G. & Kish, G. Mosaicplasty for the treatment of articular defects of the knee and ankle. Clin. Orthop. Relat. Res. 391 (Suppl.), S328–S336 (2001).

    Article  Google Scholar 

  4. Brittberg, M. et al. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N. Engl. J. Med. 331, 889–895 (1994).

    Article  CAS  Google Scholar 

  5. Knutsen, G. et al. A randomized trial comparing autologous chondrocyte implantation with microfracture. Findings at five years. J. Bone Joint Surg. Am. 89, 2105–2112 (2007).

    PubMed  Google Scholar 

  6. Bentley, G. et al. A prospective, randomised comparison of autologous chondrocyte implantation versus mosaicplasty for osteochondral defects in the knee. J. Bone Joint Surg. Br. 85, 223–230 (2003).

    Article  CAS  Google Scholar 

  7. Saris, D. B. et al. Characterized chondrocyte implantation results in better structural repair when treating symptomatic cartilage defects of the knee in a randomized controlled trial versus microfracture. Am. J. Sports Med. 36, 235–246 (2008).

    Article  Google Scholar 

  8. Knutsen, G. et al. Autologous chondrocyte implantation compared with microfracture in the knee. A randomized trial. J. Bone Joint Surg. Am. 86-A, 455–464 (2004).

    Article  Google Scholar 

  9. Kiviranta, P. et al. Comparison of novel clinically applicable methodology for sensitive diagnostics of cartilage degeneration. Eur. Cell. Mater. 13, 46–55 (2007).

    Article  CAS  Google Scholar 

  10. Brown, W. E., Potter, H. G., Marx, R. G., Wickiewicz, T. L. & Warren, R. F. Magnetic resonance imaging appearance of cartilage repair in the knee. Clin. Orthop. Relat. Res. 422, 214–223 (2004).

    Article  Google Scholar 

  11. Saarakkala, S. et al. Ultrasonic quantitation of superficial degradation of articular cartilage. Ultrasound Med. Biol. 30, 783–792 (2004).

    Article  Google Scholar 

  12. Charni-Ben Tabassi, N. & Garnero, P. Monitoring cartilage turnover. Curr. Rheumatol. Rep. 9, 16–24 (2007).

    Article  CAS  Google Scholar 

  13. Garnero, P. Use of biochemical markers to study and follow patients with osteoarthritis. Curr. Rheumatol. Rep. 8, 37–44 (2006).

    Article  Google Scholar 

  14. Wakitani, S. et al. Serum keratan sulfate is a promising marker of early articular cartilage breakdown. Rheumatology (Oxford) 46, 1652–1656 (2007).

    Article  CAS  Google Scholar 

  15. Zhen, E. Y. et al. Characterization of metalloprotease cleavage products of human articular cartilage. Arthritis Rheum. 58, 2420–2431 (2008).

    Article  CAS  Google Scholar 

  16. Tehranzadeh, J., Booya, F. & Root, J. Cartilage metabolism in osteoarthritis and the influence of viscosupplementation and steroid: a review. Acta Radiol. 46, 288–296 (2005).

    Article  CAS  Google Scholar 

  17. Altman, R. D. Status of hyaluronan supplementation therapy in osteoarthritis. Curr. Rheumatol. Rep. 5, 7–14 (2003).

    Article  Google Scholar 

  18. Snibbe, J. C. & Gambardella, R. A. Treatment options for osteoarthritis. Orthopedics 28, s215–s220 (2005).

    PubMed  Google Scholar 

  19. Juni, P. et al. Efficacy and safety of intraarticular hylan or hyaluronic acids for osteoarthritis of the knee: a randomized controlled trial. Arthritis Rheum. 56, 3610–3619 (2007).

    Article  CAS  Google Scholar 

  20. Raman, R. et al. Efficacy of Hylan G-F 20 and sodium hyaluronate in the treatment of osteoarthritis of the knee—a prospective randomized clinical trial. Knee 15, 318–324 (2008).

    Article  CAS  Google Scholar 

  21. Lai, H. Y. et al. Intra-articular hyaluronic acid for treatment of osteoarthritis: a nationwide study among the older population of Taiwan. BMC Health Serv. Res. 8, 24 (2008).

    Article  Google Scholar 

  22. Goggs, R. et al. Nutraceutical therapies for degenerative joint diseases: a critical review. Crit. Rev. Food Sci. Nutr. 45, 145–164 (2005).

    Article  CAS  Google Scholar 

  23. Basalo, I. M. et al. Chondroitin sulfate reduces the friction coefficient of articular cartilage. J. Biomech. 40, 1847–1854 (2007).

    Article  Google Scholar 

  24. Kahan, A., Uebelhart, D., De Vathaire, F., Delmas, P. D. & Reginster, J. Y. Long-term effects of chondroitins 4 and 6 sulfate on knee osteoarthritis: the study on osteoarthritis progression prevention, a two-year, randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 60, 524–533 (2009).

    Article  CAS  Google Scholar 

  25. Gouze, J. N. et al. Exogenous glucosamine globally protects chondrocytes from the arthritogenic effects of IL-1β. Arthritis Res. Ther. 8, R173 (2006).

    Article  Google Scholar 

  26. Clegg, D. O. et al. Glucosamine, chondroitin sulfate, and the two in combination for painful knee osteoarthritis. N. Engl. J. Med. 354, 795–808 (2006).

    Article  CAS  Google Scholar 

  27. Hughes, L. C., Archer, C. W. & ap Gwynn, I. The ultrastructure of mouse articular cartilage: collagen orientation and implications for tissue functionality. A polarised light and scanning electron microscope study and review. Eur. Cell. Mater. 9, 68–84 (2005).

    Article  CAS  Google Scholar 

  28. Tuli, R., Li, W. J. & Tuan, R. S. Current state of cartilage tissue engineering. Arthritis Res. Ther. 5, 235–238 (2003).

    Article  CAS  Google Scholar 

  29. Kessler, M. W. & Grande, D. A. Tissue engineering and cartilage. Organogenesis 4, 28–32 (2008).

    Article  Google Scholar 

  30. Kujawa, M. J. & Caplan, A. I. Hyaluronic acid bonded to cell-culture surfaces stimulates chondrogenesis in stage 24 limb mesenchyme cell cultures. Dev. Biol. 114, 504–518 (1986).

    Article  CAS  Google Scholar 

  31. Solchaga, L. A. et al. Hyaluronan-based polymers in the treatment of osteochondral defects. J. Orthop. Res. 18, 773–780 (2000).

    Article  CAS  Google Scholar 

  32. Hollander, A. P. et al. Maturation of tissue engineered cartilage implanted in injured and osteoarthritic human knees. Tissue Eng. 12, 1787–1798 (2006).

    Article  CAS  Google Scholar 

  33. Marcacci, M. et al. Articular cartilage engineering with Hyalograft C: 3-year clinical results. Clin. Orthop. Relat. Res. 435, 96–105 (2005).

    Article  Google Scholar 

  34. Nehrer, S. et al. Three-year clinical outcome after chondrocyte transplantation using a hyaluronan matrix for cartilage repair. Eur. J. Radiol. 57, 3–8 (2006).

    Article  CAS  Google Scholar 

  35. Brun, P. et al. Chondrocyte aggregation and reorganization into three-dimensional scaffolds. J. Biomed. Mater. Res. 46, 337–346 (1999).

    Article  CAS  Google Scholar 

  36. Campoccia, D. et al. Semisynthetic resorbable materials from hyaluronan esterification. Biomaterials 19, 2101–2127 (1998).

    Article  CAS  Google Scholar 

  37. Liao, E., Yaszemski, M., Krebsbach, P. & Hollister, S. Tissue-engineered cartilage constructs using composite hyaluronic acid/collagen I hydrogels and designed poly(propylene fumarate) scaffolds. Tissue Eng. 13, 537–550 (2007).

    Article  CAS  Google Scholar 

  38. Masuda, K., Sah, R. L., Hejna, M. J. & Thonar, E. J. A novel two-step method for the formation of tissue-engineered cartilage by mature bovine chondrocytes: the alginate-recovered-chondrocyte (ARC) method. J. Orthop. Res. 21, 139–148 (2003).

    Article  CAS  Google Scholar 

  39. Mauck, R. L. et al. Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J. Biomech. Eng. 122, 252–260 (2000).

    Article  CAS  Google Scholar 

  40. Sharma, B. & Elisseeff, J. H. Engineering structurally organized cartilage and bone tissues. Ann. Biomed. Eng. 32, 148–159 (2004).

    Article  Google Scholar 

  41. Mauck, R. L., Nicoll, S. B., Seyhan, S. L., Ateshian, G. A. & Hung, C. T. Synergistic action of growth factors and dynamic loading for articular cartilage tissue engineering. Tissue Eng. 9, 597–611 (2003).

    Article  CAS  Google Scholar 

  42. Huang, A. H., Yeger-McKeever, M., Stein, A. & Mauck, R. L. Tensile properties of engineered cartilage formed from chondrocyte- and MSC-laden hydrogels. Osteoarthritis Cartilage 16, 1074–1082 (2008).

    Article  CAS  Google Scholar 

  43. Moutos, F. T., Freed, L. E. & Guilak, F. A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage. Nat. Mater. 6, 162–167 (2007).

    Article  CAS  Google Scholar 

  44. Price, R. L., Waid, M. C., Haberstroh, K. M. & Webster, T. J. Selective bone cell adhesion on formulations containing carbon nanofibers. Biomaterials 24, 1877–1887 (2003).

    Article  CAS  Google Scholar 

  45. Chahine, N. O., Collette, N. M., Bahadori, S. & Loots, G. G. Biocompatibility of carbon nanotubes for chondrocyte growth. Transactions of the Orthopedic Research Society, San Francisco, CA, Paper #576 (2008).

    Google Scholar 

  46. Nettles, D. L., Vail, T. P., Morgan, M. T., Grinstaff, M. W. & Setton, L. A. Photocrosslinkable hyaluronan as a scaffold for articular cartilage repair. Ann. Biomed. Eng. 32, 391–397 (2004).

    Article  Google Scholar 

  47. Solchaga, L. A. et al. A rapid seeding technique for the assembly of large cell/scaffold composite constructs. Tissue Eng. 12, 1851–1863 (2006).

    Article  CAS  Google Scholar 

  48. Li, W. J., Jiang, Y. J. & Tuan, R. S. Cell-nanofiber-based cartilage tissue engineering using improved cell seeding, growth factor, and bioreactor technologies. Tissue Eng. Part A 14, 639–648 (2008).

    Article  CAS  Google Scholar 

  49. Baker, B. M. et al. The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers. Biomaterials 29, 2348–2358 (2008).

    Article  CAS  Google Scholar 

  50. Steinwachs, M. New technique for cell-seeded collagen-matrix-supported autologous chondrocyte transplantation. Arthroscopy 25, 208–211 (2009).

    Article  Google Scholar 

  51. Kon, E. et al. Arthroscopic second-generation autologous chondrocyte implantation compared with microfracture for chondral lesions of the knee: prospective nonrandomized study at 5 years. Am. J. Sports Med. 37, 33–41 (2009).

    Article  Google Scholar 

  52. Bartlett, W. et al. Autologous chondrocyte implantation versus matrix-induced autologous chondrocyte implantation for osteochondral defects of the knee: a prospective, randomised study. J. Bone Joint Surg. Br. 87, 640–645 (2005).

    Article  CAS  Google Scholar 

  53. Mironov, V., Boland, T., Trusk, T., Forgacs, G. & Markwald, R. R. Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol. 21, 157–61 (2003).

    Article  CAS  Google Scholar 

  54. L'Heureux, N. et al. Human tissue-engineered blood vessels for adult arterial revascularization. Nat. Med. 12, 361–365 (2006).

    Article  CAS  Google Scholar 

  55. L'Heureux, N., McAllister, T. N. & de la Fuente, L. M. Tissue-engineered blood vessel for adult arterial revascularization. N. Engl. J. Med. 357, 1451–1453 (2007).

    Article  CAS  Google Scholar 

  56. Mrugala, D. et al. Gene expression profile of multipotent mesenchymal stromal cells: identification of pathways common to TGFβ3/BMP2-induced chondrogenesis. Cloning Stem Cells 11, 61–76 (2009).

    Article  CAS  Google Scholar 

  57. Chuma, H., Mizuta, H., Kudo, S., Takagi, K. & Hiraki, Y. One day exposure to FGF-2 was sufficient for the regenerative repair of full-thickness defects of articular cartilage in rabbits. Osteoarthritis Cartilage 12, 834–842 (2004).

    Article  CAS  Google Scholar 

  58. Shi, S., Mercer, S., Eckert, G. J. & Trippel, S. B. Growth factor regulation of growth factors in articular chondrocytes. J. Biol. Chem. 284, 6697–6704 (2009).

    Article  CAS  Google Scholar 

  59. Elisseeff, J., McIntosh, W., Fu, K., Blunk, B. T. & Langer, R. Controlled-release of IGF-I and TGF-β1 in a photopolymerizing hydrogel for cartilage tissue engineering. J. Orthop. Res. 19, 1098–1104 (2001).

    Article  CAS  Google Scholar 

  60. Fan, H. et al. Porous gelatin-chondroitin-hyaluronate tri-copolymer scaffold containing microspheres loaded with TGF-β1 induces differentiation of mesenchymal stem cells in vivo for enhancing cartilage repair. J. Biomed. Mater. Res. A 77, 785–794 (2006).

    Article  Google Scholar 

  61. Martinek, V., Ueblacker, P. & Imhoff, A. B. Current concepts of gene therapy and cartilage repair. J. Bone Joint Surg. Br. 85, 782–788 (2003).

    Article  CAS  Google Scholar 

  62. Grande, D. A., Mason, J., Light, E. & Dines, D. Stem cells as platforms for delivery of genes to enhance cartilage repair. J. Bone Joint Surg. Am. 85-A (Suppl. 2), 111–116 (2003).

    Article  Google Scholar 

  63. Lima, E. G. et al. The beneficial effect of delayed compressive loading on tissue-engineered cartilage constructs cultured with TGF-β3. Osteoarthritis Cartilage 15, 1025–1033 (2007).

    Article  CAS  Google Scholar 

  64. Wu, W. et al. Platelet-rich plasma—a promising cell carrier for micro-invasive articular cartilage repair. Med. Hypotheses 72, 455–457 (2009).

    Article  Google Scholar 

  65. Koelling, S. et al. Migratory chondrogenic progenitor cells from repair tissue during the later stages of human osteoarthritis. Cell Stem Cell 4, 324–335 (2009).

    Article  CAS  Google Scholar 

  66. Erickson, G. R. et al. Chondrogenic potential of adipose tissue-derived stromal cells in vitro and in vivo. Biochem. Biophys. Res. Commun. 290, 763–769 (2002).

    Article  CAS  Google Scholar 

  67. Rosenbaum, A. J., Grande, D. A. & Dines, J. S. The use of mesenchymal stem cells in tissue engineering: a global assessment. Organogenesis 4, 23–27 (2008).

    Article  Google Scholar 

  68. Hwang, N. S. & Elisseeff, J. Application of stem cells for articular cartilage regeneration. J. Knee Surg. 22, 60–71 (2009).

    Article  Google Scholar 

  69. Kim, H. T., Zaffagnini, S., Mizuno, S., Abelow, S. & Safran, M. R. A peek into the possible future of management of articular cartilage injuries: gene therapy and scaffolds for cartilage repair. J. Orthop. Sports Phys. Ther. 36, 765–773 (2006).

    Article  Google Scholar 

  70. Palmer, G. et al. Development of gene-based therapies for cartilage repair. Crit. Rev. Eukaryot. Gene Expr. 12, 259–273 (2002).

    Article  CAS  Google Scholar 

  71. Trippel, S. B., Ghivizzani, S. C. & Nixon, A. J. Gene-based approaches for the repair of articular cartilage. Gene Ther. 11, 351–359 (2004).

    Article  CAS  Google Scholar 

  72. Gafni, Y. et al. Stem cells as vehicles for orthopedic gene therapy. Gene Ther. 11, 417–426 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel A. Grande.

Ethics declarations

Competing interests

N.A. Sgaglione has acted as a consultant for Arthrocare, BioSyntech, ConMed Linvatec, Smith and Nephew Endoscopy and TiGenix. D.A. Grande has acted as a consultant for Arthrocare and TiGenix. The other authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daher, R., Chahine, N., Greenberg, A. et al. New methods to diagnose and treat cartilage degeneration. Nat Rev Rheumatol 5, 599–607 (2009). https://doi.org/10.1038/nrrheum.2009.204

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2009.204

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing