Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Nitrogen metabolism in Mycobacterium tuberculosis physiology and virulence

Abstract

Several major pathogens, including Mycobacterium tuberculosis, parasitize host cells and exploit host-derived nutrients to sustain their own metabolism. Although the carbon sources that are used by M. tuberculosis have been extensively studied, the mechanisms by which mycobacteria capture and metabolize nitrogen, which is another essential constituent of biomolecules, have only recently been revisited. In this Progress article, we discuss central nitrogen metabolism in M. tuberculosis, the mechanisms that are used by this pathogen to obtain nitrogen from its host and the potential role of nitrogen capture and metabolism in virulence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Regulation of central nitrogen metabolism in Mycobacterium tuberculosis.
Figure 2: Mechanisms for the acquisition of inorganic and organic nitrogen sources.
Figure 3: Emerging roles for nitrogen metabolism in Mycobacterium tuberculosis virulence.

Similar content being viewed by others

References

  1. Zumla, A. George, A., Sharma, V., Herbert, N. & Baroness Masham of Ilton. WHO's 2013 global report on tuberculosis: successes, threats, and opportunities. Lancet 382, 1765–1767 (2013).

    Article  PubMed  Google Scholar 

  2. Ehrt, S. & Schnappinger, D. Mycobacterial survival strategies in the phagosome: defence against host stresses. Cell. Microbiol. 11, 1170–1178 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Honer zu Bentrup, K. & Russell, D. G. Mycobacterial persistence: adaptation to a changing environment. Trends Microbiol. 9, 597–605 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Rustad, T. R., Sherrid, A. M., Minch, K. J. & Sherman, D. R. Hypoxia: a window into Mycobacterium tuberculosis latency. Cell. Microbiol. 11, 1151–1159 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Russell, D. G. Mycobacterium tuberculosis: here today, and here tomorrow. Nature Rev. Mol. Cell Biol. 2, 569–577 (2001).

    Article  CAS  Google Scholar 

  6. Zhang, Y. J. & Rubin, E. J. Feast or famine: the host–pathogen battle over amino acids. Cell. Microbiol. 15, 1079–1087 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Eisenreich, W., Dandekar, T., Heesemann, J. & Goebel, W. Carbon metabolism of intracellular bacterial pathogens and possible links to virulence. Nature Rev. Microbiol. 8, 401–412 (2010).

    Article  CAS  Google Scholar 

  8. Leigh, J. A. & Dodsworth, J. A. Nitrogen regulation in bacteria and archaea. Annu. Rev. Microbiol. 61, 349–377 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Amon, J., Titgemeyer, F. & Burkovski, A. A genomic view on nitrogen metabolism and nitrogen control in mycobacteria. J. Mol. Microbiol. Biotechnol. 17, 20–29 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Viljoen, A. J., Kirsten, C. J., Baker, B., van Helden, P. D. & Wiid, I. J. The role of glutamine oxoglutarate aminotransferase and glutamate dehydrogenase in nitrogen metabolism in Mycobacterium bovis BCG. PLoS ONE 8, e84452 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Cole, S. T. et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537–544 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Tullius, M. V., Harth, G. & Horwitz, M. A. Glutamine synthetase GlnA1 is essential for growth of Mycobacterium tuberculosis in human THP-1 macrophages and guinea pigs. Infect. Immun. 71, 3927–3936 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Amon, J., Titgemeyer, F. & Burkovski, A. Common patterns — unique features: nitrogen metabolism and regulation in Gram-positive bacteria. FEMS Microbiol. Rev. 34, 588–605 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Arcondeguy, T., Jack, R. & Merrick, M. P(II) signal transduction proteins, pivotal players in microbial nitrogen control. Microbiol. Mol. Biol. Rev. 65, 80–105 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Parish, T. & Stoker, N. G. glnE is an essential gene in Mycobacterium tuberculosis. J. Bacteriol. 182, 5715–5720 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shetty, N. D., Reddy, M. C., Palaninathan, S. K., Owen, J. L. & Sacchettini, J. C. Crystal structures of the apo and ATP bound Mycobacterium tuberculosis nitrogen regulatory PII protein. Protein Sci. 19, 1513–1524 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Williams, K. J., Bennett, M. H., Barton, G. R., Jenkins, V. A. & Robertson, B. D. Adenylylation of mycobacterial Glnk (PII) protein is induced by nitrogen limitation. Tuberculosis (Edinb.) 93, 198–206 (2013).

    Article  CAS  Google Scholar 

  18. Read, R., Pashley, C. A., Smith, D. & Parish, T. The role of GlnD in ammonia assimilation in Mycobacterium tuberculosis. Tuberculosis (Edinb.) 87, 384–390 (2007).

    Article  CAS  Google Scholar 

  19. Mehta, R. et al. Adenylylation and catalytic properties of Mycobacterium tuberculosis glutamine synthetase expressed in Escherichia coli versus mycobacteria. J. Biol. Chem. 279, 22477–22482 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Nott, T. J. et al. An intramolecular switch regulates phosphoindependent FHA domain interactions in Mycobacterium tuberculosis. Sci Signal 2, ra12 (2009).

    Article  PubMed  Google Scholar 

  21. O'Hare, H. M. et al. Regulation of glutamate metabolism by protein kinases in mycobacteria. Mol. Microbiol. 70, 1408–1423 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Villarino, A. et al. Proteomic identification of M. tuberculosis protein kinase substrates: PknB recruits GarA, a FHA domain-containing protein, through activation loop-mediated interactions. J. Mol. Biol. 350, 953–963 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Malm, S. et al. The roles of the nitrate reductase NarGHJI, the nitrite reductase NirBD and the response regulator GlnR in nitrate assimilation of Mycobacterium tuberculosis. Microbiology 155, 1332–1339 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Jenkins, V. A., Barton, G. R., Robertson, B. D. & Williams, K. J. Genome wide analysis of the complete GlnR nitrogen-response regulon in Mycobacterium smegmatis. BMC Genomics 14, 301 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jessberger, N. et al. Nitrogen starvation-induced transcriptome alterations and influence of transcription regulator mutants in Mycobacterium smegmatis. BMC Res. Notes 6, 482 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Gouzy, A., Poquet, Y. & Neyrolles, O. Amino acid capture and utilization within the Mycobacterium tuberculosis phagosome. Future Microbiol. 9, 631–637 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Lyon, R. H., Hall, W. H. & Costas-Martinez, C. Utilization of amino acids during growth of Mycobacterium tuberculosis in rotary cultures. Infect. Immun. 1, 513–520 (1970).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Niederweis, M. Nutrient acquisition by mycobacteria. Microbiology 154, 679–692 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Khan, A. & Sarkar, D. Nitrate reduction pathways in mycobacteria and their implications during latency. Microbiology 158, 301–307 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Giffin, M. M., Raab, R. W., Morganstern, M. & Sohaskey, C. D. Mutational analysis of the respiratory nitrate transporter NarK2 of Mycobacterium tuberculosis. PLoS ONE 7, e45459 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lofthouse, E. K. et al. Systems-based approaches to probing metabolic variation within the Mycobacterium tuberculosis complex. PLoS ONE 8, e75913 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gouzy, A. et al. Mycobacterium tuberculosis exploits asparagine to assimilate nitrogen and resist acid stress during infection. PLoS Pathog. 10, e1003928 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Surken, M., Keller, C., Rohker, C., Ehlers, S. & Bange, F. C. Anaerobic arginine metabolism of Mycobacterium tuberculosis is mediated by arginine deiminase (arcA), but is not essential for chronic persistence in an aerogenic mouse model of infection. Int. J. Med. Microbiol. 298, 657–661 (2008).

    Article  PubMed  CAS  Google Scholar 

  34. Song, H. & Niederweis, M. Uptake of sulphate but not phosphate by Mycobacterium tuberculosis is slower than that for Mycobacterium smegmatis. J. Bacteriol. 194, 956–964 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gouzy, A. et al. Mycobacterium tuberculosis nitrogen assimilation and host colonization require aspartate. Nature Chem. Biol. 9, 674–676 (2013).

    Article  CAS  Google Scholar 

  36. Seth, A. & Connell, N. D. Amino acid transport and metabolism in mycobacteria: cloning, interruption, and characterization of an L-Arginine/γ-aminobutyric acid permease in Mycobacterium bovis BCG. J. Bacteriol. 182, 919–927 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Price, C. T., Bukka, A., Cynamon, M. & Graham, J. E. Glycine betaine uptake by the ProXVWZ ABC transporter contributes to the ability of Mycobacterium tuberculosis to initiate growth in human macrophages. J. Bacteriol. 190, 3955–3961 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Flores-Valdez, M. A., Morris, R. P., Laval, F., Daffe, M. & Schoolnik, G. K. Mycobacterium tuberculosis modulates its cell surface via an oligopeptide permease (Opp) transport system. FASEB J. 23, 4091–4104 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Green, R. M., Seth, A. & Connell, N. D. A peptide permease mutant of Mycobacterium bovis BCG resistant to the toxic peptides glutathione and S-nitrosoglutathione. Infect. Immun. 68, 429–436 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Braibant, M., Gilot, P. & Content, J. The ATP binding cassette (ABC) transport systems of Mycobacterium tuberculosis. FEMS Microbiol. Rev. 24, 449–467 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Lin, W. et al. Urease activity represents an alternative pathway for Mycobacterium tuberculosis nitrogen metabolism. Infect. Immun. 80, 2771–2779 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Clemens, D. L., Lee, B. Y. & Horwitz, M. A. Purification, characterization, and genetic analysis of Mycobacterium tuberculosis urease, a potentially critical determinant of host–pathogen interaction. J. Bacteriol. 177, 5644–5652 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nathan, C. & Shiloh, M. U. Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc. Natl Acad. Sci. USA 97, 8841–8848 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Davidge, K. S. & Dikshit, K. L. Haemoglobins of mycobacteria: structural features and biological functions. Adv. Microb. Physiol. 63, 147–194 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Cunningham-Bussel, A., Zhang, T. & Nathan, C. F. Nitrite produced by Mycobacterium tuberculosis in human macrophages in physiologic oxygen impacts bacterial ATP consumption and gene expression. Proc. Natl Acad. Sci. USA 110, E4256–E4265 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jung, J. Y. et al. The intracellular environment of human macrophages that produce nitric oxide promotes growth of mycobacteria. Infect. Immun. 81, 3198–3209 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Davis, A. S. et al. Mechanism of inducible nitric oxide synthase exclusion from mycobacterial phagosomes. PLoS Pathog. 3, e186 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. MacMicking, J. D. et al. Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc. Natl Acad. Sci. USA 94, 5243–5248 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Aly, S. et al. Oxygen status of lung granulomas in Mycobacterium tuberculosis-infected mice. J. Pathol. 210, 298–305 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Shin, J. H. et al. 1H NMR-based metabolomic profiling in mice infected with Mycobacterium tuberculosis. J. Proteome Res. 10, 2238–2247 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Somashekar, B. S. et al. Metabolic profiling of lung granuloma in Mycobacterium tuberculosis infected guinea pigs: ex vivo1H magic angle spinning NMR studies. J. Proteome Res. 10, 4186–4195 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Beste, D. J. et al. 13C.flux spectral analysis of host-pathogen metabolism reveals a mixed diet for intracellular tuberculosis. Chem. Biol. 20, 1012–1021 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cole, S. T. et al. Massive gene decay in the leprosy bacillus. Nature 409, 1007–1011 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Elharar, Y. et al. Survival of mycobacteria depends on proteasome-mediated amino acid recycling under nutrient limitation. EMBO J. 33, 1802–1814 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gandotra, S., Lebron, M. B. & Ehrt, S. The Mycobacterium tuberculosis proteasome active site threonine is essential for persistence yet dispensable for replication and resistance to nitric oxide. PLoS Pathog. 6, e1001040 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Nau, G. J. et al. Human macrophage activation programs induced by bacterial pathogens. Proc. Natl Acad. Sci. USA 99, 1503–1508 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tailleux, L. et al. Probing host pathogen crosstalk by transcriptional profiling of both Mycobacterium tuberculosis and infected human dendritic cells and macrophages. PLoS ONE 3, e1403 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Campbell-Valois, F. X. et al. Quantitative proteomics reveals that only a subset of the endoplasmic reticulum contributes to the phagosome. Mol Cell Proteomics 11, M111 016378 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Barel, M., Meibom, K., Dubail, I., Botella, J. & Charbit, A. Francisella tularensis regulates the expression of the amino acid transporter SLC1A5 in infected THP-1 human monocytes. Cell. Microbiol. 14, 1769–1783 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Wieland, H., Ullrich, S., Lang, F. & Neumeister, B. Intracellular multiplication of Legionella pneumophila depends on host cell amino acid transporter SLC1A5. Mol. Microbiol. 55, 1528–1537 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Das, P. et al. Cationic amino acid transporters and Salmonella Typhimurium ArgT collectively regulate arginine availability towards intracellular Salmonella growth. PLoS ONE 5, e15466 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Talaue, M. T. et al. Arginine homeostasis in J774.1 macrophages in the context of Mycobacterium bovis BCG infection. J. Bacteriol. 188, 4830–4840 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Qualls, J. E. et al. Sustained generation of nitric oxide and control of mycobacterial infection requires argininosuccinate synthase 1. Cell Host Microbe 12, 313–323 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhang, Y. J. et al. Tryptophan biosynthesis protects mycobacteria from CD4 T-cell-mediated killing. Cell 155, 1296–1308 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chu, P., Rodriguez, A. R., Arulanandam, B. P. & Klose, K. E. Tryptophan prototrophy contributes to Francisella tularensis evasion of gamma interferon-mediated host defense. Infect. Immun. 79, 2356–2361 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. van der Wel, N. et al. M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells. Cell 129, 1287–1298 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Fuchs, T. M., Eisenreich, W., Kern, T. & Dandekar, T. Toward a systemic understanding of Listeria monocytogenes metabolism during infection. Front. Microbiol. 3, 23 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Steele, S. et al. Francisella tularensis harvests nutrients derived via ATG5-independent autophagy to support intracellular growth. PLoS Pathog. 9, e1003562 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bradfute, S. B. et al. Autophagy as an immune effector against tuberculosis. Curr. Opin. Microbiol. 16, 355–365 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Carroll, P., Pashley, C. A. & Parish, T. Functional analysis of GlnE, an essential adenylyl transferase in Mycobacterium tuberculosis. J. Bacteriol. 190, 4894–4902 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nilsson, M. T. et al. Structural basis for the inhibition of Mycobacterium tuberculosis glutamine synthetase by novel ATP-competitive inhibitors. J. Mol. Biol. 393, 504–513 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Youmans, A. S. & Youmans, G. P. Studies on the metabolism of Mycobacterium tuberculosis. II. The effect of compounds related to the Kreb's tricarboxylic acid cycle on the growth of Mycobacterium tuberculosis var. hominis. J. Bacteriol. 65, 96–99 (1953).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pandey, A. K. & Sassetti, C. M. Mycobacterial persistence requires the utilization of host cholesterol. Proc. Natl Acad. Sci. USA 105, 4376–4380 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Daniel, J., Maamar, H., Deb, C., Sirakova, T. D. & Kolattukudy, P. E. Mycobacterium tuberculosis uses host triacylglycerol to accumulate lipid droplets and acquires a dormancy-like phenotype in lipid-loaded macrophages. PLoS Pathog. 7, e1002093 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Caire-Brandli, I. et al. Reversible lipid accumulation and associated division arrest of Mycobacterium avium in lipoprotein-induced foamy macrophages may resemble key events during latency and reactivation of tuberculosis. Infect. Immun. 82, 476–490 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Peyron, P. et al. Foamy macrophages from tuberculous patients' granulomas constitute a nutrient-rich reservoir for M. tuberculosis persistence. PLoS Pathog. 4, e1000204 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Russell, D. G., Cardona, P. J., Kim, M. J., Allain, S. & Altare, F. Foamy macrophages and the progression of the human tuberculosis granuloma. Nature Immunol. 10, 943–948 (2009).

    Article  CAS  Google Scholar 

  78. Singh, V. et al. Mycobacterium tuberculosis-driven targeted recalibration of macrophage lipid homeostasis promotes the foamy phenotype. Cell Host Microbe 12, 669–681 (2012).

    Article  CAS  PubMed  Google Scholar 

  79. Marrero, J., Trujillo, C., Rhee, K. Y. & Ehrt, S. Glucose phosphorylation is required for Mycobacterium tuberculosis persistence in mice. PLoS Pathog. 9, e1003116 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rhee, K. Y. et al. Central carbon metabolism in Mycobacterium tuberculosis: an unexpected frontier. Trends Microbiol. 19, 307–314 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Beste, D. J. et al. 13C metabolic flux analysis identifies an unusual route for pyruvate dissimilation in mycobacteria which requires isocitrate lyase and carbon dioxide fixation. PLoS Pathog. 7, e1002091 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Barel, M. & Charbit, A. Francisella tularensis intracellular survival: to eat or to die. Microbes Infect. (2013).

  83. Gesbert, G. et al. Asparagine assimilation is critical for intracellular replication and dissemination of Francisella. Cell. Microbiol. (2013).

  84. Sauer, J. D., Bachman, M. A. & Swanson, M. S. The phagosomal transporter A couples threonine acquisition to differentiation and replication of Legionella pneumophila in macrophages. Proc. Natl Acad. Sci. USA 102, 9924–9929 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Price, C. T., Al-Quadan, T., Santic, M., Rosenshine, I. & Abu Kwaik, Y. Host proteasomal degradation generates amino acids essential for intracellular bacterial growth. Science 334, 1553–1557 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A.G. is a fellow of the Fondation pour la Recherche Médicale (FRM). The authors received no specific funding for this work. Research in the laboratory of O.N. is supported by the Centre National de la Recherche Scientifique (CNRS), the FRM, the Agence Nationale de la Recherche (ANR), the European Union, the Fondation Mérieux, and the Bettencourt–Schueller Foundation. The funding agencies had no role in the decision to publish this article or in its preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Neyrolles.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gouzy, A., Poquet, Y. & Neyrolles, O. Nitrogen metabolism in Mycobacterium tuberculosis physiology and virulence. Nat Rev Microbiol 12, 729–737 (2014). https://doi.org/10.1038/nrmicro3349

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro3349

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology