Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Chemoprevention of hereditary colon cancers: time for new strategies

Key Points

  • Colon cancer can be prevented through chemoprevention

  • The highest return from chemopreventive strategies is in patients with a hereditary predisposition for developing colorectal cancer

  • Clinical trials have yielded conflicting results and currently no chemopreventive agent is approved in hereditary colorectal cancer syndromes

  • Chemoprevention should ultimately be aimed at delaying colectomy, reducing endoscopies and polypectomies, and preventing cancer development

  • Future trials must be carefully designed and conducted to be successful, with an effort to avoid wasting resources and time

Abstract

Colorectal cancer (CRC) is potentially preventable. Chemoprevention, a focus of research for the past three decades, aims to prevent or delay the onset of cancer through the regression or prevention of colonic adenomas. Ideal pharmacological agents for chemoprevention should be cheap and nontoxic. Although data indicate that aspirin can reduce the risk of CRC in the general population, the highest return from chemopreventive strategies would be expected in patients with the highest risk of developing the disease, particularly those with a defined hereditary predisposition. Despite compelling data showing that a large number of chemopreventive agents show promise in preclinical CRC models, clinical studies have yielded conflicting results. This Review provides a historical and methodological perspective of chemoprevention in familial adenomatous polyposis and Lynch syndrome, and summarizes the current status of CRC chemoprevention in humans. Our goal is to critically focus on important issues of trial design, with particular attention on the choice of appropriate trial end points, how such end points should be measured, and which patients are the ideal candidates to be included in a chemopreventive trial.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Timeline of selected published chemopreventive clinical trials for FAP.
Figure 2: A new approach for drug development in chemopreventive trials for FAP.

Similar content being viewed by others

References

  1. Lewis, D. R. et al. Early estimates of SEER cancer incidence for 2012: approaches, opportunities, and cautions for obtaining preliminary estimates of cancer incidence. Cancer 121, 2053–2062 (2015).

    PubMed  Google Scholar 

  2. Song, M., Garrett, W. S. & Chan, A. T. Nutrients, foods, and colorectal cancer prevention. Gastroenterology 148, 1244–1260.e16 (2015).

    CAS  PubMed  Google Scholar 

  3. Wu, X., Patterson, S. & Hawk, E. Chemoprevention — history and general principles. Best Pract. Res. Clin. Gastroenterol. 25, 445–459 (2011).

    CAS  PubMed  Google Scholar 

  4. Rothwell, P. M. et al. Long-term effect of aspirin on colorectal cancer incidence and mortality: 20-year follow-up of five randomised trials. Lancet 376, 1741–1750 (2010).

    CAS  PubMed  Google Scholar 

  5. Jasperson, K. W., Tuohy, T. M., Neklason, D. W. & Burt, R. W. Hereditary and familial colon cancer. Gastroenterology 138, 2044–2058 (2010).

    CAS  PubMed  Google Scholar 

  6. Hawk, E., Lubet, R. & Limburg, P. Chemoprevention in hereditary colorectal cancer syndromes. Cancer 86, 2551–2563 (1999).

    CAS  PubMed  Google Scholar 

  7. Stoffel, E. M. & Boland, C. R. Genetics and genetic testing in hereditary colorectal cancer. Gastroenterology 149, 1191–1203.e2 (2015).

    PubMed  Google Scholar 

  8. Grady, W. M. & Carethers, J. M. Genomic and epigenetic instability in colorectal cancer pathogenesis. Gastroenterology 135, 1079–1099 (2008).

    CAS  PubMed  Google Scholar 

  9. Bodmer, W. F. et al. Localization of the gene for familial adenomatous polyposis on chromosome 5. Nature 328, 614–616 (1987).

    CAS  PubMed  Google Scholar 

  10. Groden, J. et al. Identification and characterization of the familial adenomatous polyposis coli gene. Cell 66, 589–600 (1991).

    CAS  PubMed  Google Scholar 

  11. Kinzler, K. W. et al. Identification of FAP locus genes from chromosome 5q21. Science 253, 661–665 (1991).

    CAS  PubMed  Google Scholar 

  12. Nishisho, I. et al. Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science 253, 665–669 (1991).

    CAS  PubMed  Google Scholar 

  13. Petersen, G. M., Slack, J. & Nakamura, Y. Screening guidelines and premorbid diagnosis of familial adenomatous polyposis using linkage. Gastroenterology 100, 1658–1664 (1991).

    CAS  PubMed  Google Scholar 

  14. Burt, R. W. et al. Genetic testing and phenotype in a large kindred with attenuated familial adenomatous polyposis. Gastroenterology 127, 444–451 (2004).

    PubMed  Google Scholar 

  15. Carethers, J. M. & Stoffel, E. M. Lynch syndrome and Lynch syndrome mimics: the growing complex landscape of hereditary colon cancer. World J. Gastroenterol. 21, 9253–9261 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Dowty, J. G. et al. Cancer risks for MLH1 and MSH2 mutation carriers. Hum. Mutat. 34, 490–497 (2013).

    CAS  PubMed  Google Scholar 

  17. Edelstein, D. L. et al. Rapid development of colorectal neoplasia in patients with Lynch syndrome. Clin. Gastroenterol. Hepatol. 9, 340–343 (2011).

    PubMed  Google Scholar 

  18. Haanstra, J. F. et al. Quality colonoscopy and risk of interval cancer in Lynch syndrome. Int. J. Colorectal Dis. 28, 1643–1649 (2013).

    CAS  PubMed  Google Scholar 

  19. Cohen, S. et al. Polyposis syndromes in children and adolescents: a case series data analysis. Eur. J. Gastroenterol. Hepatol. 26, 972–977 (2014).

    PubMed  Google Scholar 

  20. Vasen, H. F., Tomlinson, I. & Castells, A. Clinical management of hereditary colorectal cancer syndromes. Nat. Rev. Gastroenterol. Hepatol. 12, 88–97 (2015).

    PubMed  Google Scholar 

  21. Committee, A. S.o. P. et al. Complications of colonoscopy. Gastrointest. Endosc. 74, 745–752 (2011).

    Google Scholar 

  22. Johnson, M. D. et al. Outcome based on management for duodenal adenomas: sporadic versus familial disease. J. Gastrointest. Surg. 14, 229–235 (2010).

    PubMed  Google Scholar 

  23. Rajaratnam, S. G., Eglinton, T. W., Hider, P. & Fearnhead, N. S. Impact of ileal pouch-anal anastomosis on female fertility: meta-analysis and systematic review. Int. J. Colorectal Dis. 26, 1365–1374 (2011).

    PubMed  Google Scholar 

  24. van Balkom, K. A., Beld, M. P., Visschers, R. G., van Gemert, W. G. & Breukink, S. O. Long-term results after restorative proctocolectomy with ileal pouch-anal anastomosis at a young age. Dis. Colon Rectum 55, 939–947 (2012).

    PubMed  Google Scholar 

  25. Van Duijvendijk, P. et al. Quality of life after total colectomy with ileorectal anastomosis or proctocolectomy and ileal pouch-anal anastomosis for familial adenomatous polyposis. Br. J. Surg. 87, 590–596 (2000).

    CAS  PubMed  Google Scholar 

  26. Spigelman, A. D., Williams, C. B., Talbot, I. C., Domizio, P. & Phillips, R. K. Upper gastrointestinal cancer in patients with familial adenomatous polyposis. Lancet 2, 783–785 (1989).

    CAS  PubMed  Google Scholar 

  27. Gouma, D. J. et al. Rates of complications and death after pancreaticoduodenectomy: risk factors and the impact of hospital volume. Ann. Surg. 232, 786–795 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kotwall, C. A., Maxwell, J. G., Brinker, C. C., Koch, G. G. & Covington, D. L. National estimates of mortality rates for radical pancreaticoduodenectomy in 25,000 patients. Ann. Surg. Oncol. 9, 847–854 (2002).

    PubMed  Google Scholar 

  29. Schmeler, K. M. et al. Prophylactic surgery to reduce the risk of gynecologic cancers in the Lynch syndrome. N. Engl. J. Med. 354, 261–269 (2006).

    CAS  PubMed  Google Scholar 

  30. Jenkins, M. A. et al. Short-term risk of colorectal cancer in individuals with lynch syndrome: a meta-analysis. J. Clin. Oncol. 33, 326–331 (2015).

    PubMed  Google Scholar 

  31. Bussey, H. J. et al. A randomized trial of ascorbic acid in polyposis coli. Cancer 50, 1434–1439 (1982).

    CAS  PubMed  Google Scholar 

  32. Waddell, W. R. & Loughry, R. W. Sulindac for polyposis of the colon. J. Surg. Oncol. 24, 83–87 (1983).

    CAS  PubMed  Google Scholar 

  33. DeCosse, J. J., Miller, H. H. & Lesser, M. L. Effect of wheat fiber and vitamins C and E on rectal polyps in patients with familial adenomatous polyposis. J. Natl Cancer Inst. 81, 1290–1297 (1989).

    CAS  PubMed  Google Scholar 

  34. Labayle, D. et al. Sulindac causes regression of rectal polyps in familial adenomatous polyposis. Gastroenterology 101, 635–639 (1991).

    CAS  PubMed  Google Scholar 

  35. Giardiello, F. M. et al. Treatment of colonic and rectal adenomas with sulindac in familial adenomatous polyposis. N. Engl. J. Med. 328, 1313–1316 (1993).

    CAS  PubMed  Google Scholar 

  36. Steinbach, G. et al. The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N. Engl. J. Med. 342, 1946–1952 (2000).

    CAS  PubMed  Google Scholar 

  37. van Stolk, R. et al. Phase I trial of exisulind (sulindac sulfone, FGN-1) as a chemopreventive agent in patients with familial adenomatous polyposis. Clin. Cancer Res. 6, 78–89 (2000).

    CAS  PubMed  Google Scholar 

  38. Giardiello, F. M. et al. Primary chemoprevention of familial adenomatous polyposis with sulindac. N. Engl. J. Med. 346, 1054–1059 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Phillips, R. K. et al. A randomised, double blind, placebo controlled study of celecoxib, a selective cyclooxygenase 2 inhibitor, on duodenal polyposis in familial adenomatous polyposis. Gut 50, 857–860 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Higuchi, T. et al. A randomized, double-blind, placebo-controlled trial of the effects of rofecoxib, a selective cyclooxygenase-2 inhibitor, on rectal polyps in familial adenomatous polyposis patients. Clin. Cancer Res. 9, 4756–4760 (2003).

    CAS  PubMed  Google Scholar 

  41. Cruz-Correa, M. et al. Combination treatment with curcumin and quercetin of adenomas in familial adenomatous polyposis. Clin. Gastroenterol. Hepatol. 4, 1035–1038 (2006).

    CAS  PubMed  Google Scholar 

  42. Lynch, P. M. et al. The safety and efficacy of celecoxib in children with familial adenomatous polyposis. Am. J. Gastroenterol. 105, 1437–1443 (2010).

    CAS  PubMed  Google Scholar 

  43. West, N. J. et al. Eicosapentaenoic acid reduces rectal polyp number and size in familial adenomatous polyposis. Gut 59, 918–925 (2010).

    CAS  PubMed  Google Scholar 

  44. Burn, J. et al. A randomized placebo-controlled prevention trial of aspirin and/or resistant starch in young people with familial adenomatous polyposis. Cancer Prev. Res. (Phila.) 4, 655–665 (2011).

    CAS  Google Scholar 

  45. Ishikawa, H. et al. Preventive effects of low-dose aspirin on colorectal adenoma growth in patients with familial adenomatous polyposis: double-blind, randomized clinical trial. Cancer Med. 2, 50–56 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Lynch, P. M. et al. An international randomised trial of celecoxib versus celecoxib plus difluoromethylornithine in patients with familial adenomatous polyposis. Gut 65, 286–295 (2016).

    CAS  PubMed  Google Scholar 

  47. Kim, B. & Giardiello, F. M. Chemoprevention in familial adenomatous polyposis. Best Pract. Res. Clin. Gastroenterol. 25, 607–622 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Niv, Y. & Fraser, G. M. Adenocarcinoma in the rectal segment in familial polyposis coli is not prevented by sulindac therapy. Gastroenterology 107, 854–857 (1994).

    CAS  PubMed  Google Scholar 

  49. Thorson, A. G., Lynch, H. T. & Smyrk, T. C. Rectal cancer in FAP patient after sulindac. Lancet 343, 180 (1994).

    CAS  PubMed  Google Scholar 

  50. Nugent, K. P., Farmer, K. C., Spigelman, A. D., Williams, C. B. & Phillips, R. K. Randomized controlled trial of the effect of sulindac on duodenal and rectal polyposis and cell proliferation in patients with familial adenomatous polyposis. Br. J. Surg. 80, 1618–1619 (1993).

    CAS  PubMed  Google Scholar 

  51. Spagnesi, M. T. et al. Rectal proliferation and polyp occurrence in patients with familial adenomatous polyposis after sulindac treatment. Gastroenterology 106, 362–366 (1994).

    CAS  PubMed  Google Scholar 

  52. Oshima, M. et al. Suppression of intestinal polyposis in ApcΔ716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell 87, 803–809 (1996).

    CAS  PubMed  Google Scholar 

  53. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  54. Arber, N. et al. Celecoxib for the prevention of colorectal adenomatous polyps. N. Engl. J. Med. 355, 885–895 (2006).

    CAS  PubMed  Google Scholar 

  55. Bertagnolli, M. M. et al. Celecoxib for the prevention of sporadic colorectal adenomas. N. Engl. J. Med. 355, 873–884 (2006).

    CAS  PubMed  Google Scholar 

  56. Hallak, A. et al. Rofecoxib reduces polyp recurrence in familial polyposis. Dig. Dis. Sci. 48, 1998–2002 (2003).

    CAS  PubMed  Google Scholar 

  57. Meyskens, F. L. Jr et al. Difluoromethylornithine plus sulindac for the prevention of sporadic colorectal adenomas: a randomized placebo-controlled, double-blind trial. Cancer Prev. Res. (Phila.) 1, 32–38 (2008).

    CAS  Google Scholar 

  58. Lao, C. D. et al. Irreversible ototoxicity associated with difluoromethylornithine. Cancer Epidemiol. Biomarkers Prev. 13, 1250–1252 (2004).

    CAS  PubMed  Google Scholar 

  59. US National Library of Medicine. ClinicalTrials.gov[online], (2016).

  60. Samadi, A. K. et al. A multi-targeted approach to suppress tumor-promoting inflammation. Semin. Cancer Biol. 35, S151–S184 (2015).

    PubMed  Google Scholar 

  61. US National Library of Medicine. ClinicalTrials.gov[online], (2016).

  62. Fini, L. et al. Highly purified eicosapentaenoic acid as free fatty acids strongly suppresses polyps in ApcMin/+ mice. Clin. Cancer Res. 16, 5703–5711 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Kortum, B. et al. Mesalazine and thymoquinone attenuate intestinal tumour development in Msh2loxP/loxP Villin–Cre mice. Gut 64, 1905–1912 (2015).

    PubMed  Google Scholar 

  64. McIlhatton, M. A. et al. Aspirin and low-dose nitric oxide-donating aspirin increase life span in a Lynch syndrome mouse model. Cancer Prev. Res. (Phila.) 4, 684–693 (2011).

    CAS  Google Scholar 

  65. Itano, O. et al. Sulindac effects on inflammation and tumorigenesis in the intestine of mice with Apc and Mlh1 mutations. Carcinogenesis 30, 1923–1926 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Sansom, O. J., Stark, L. A., Dunlop, M. G. & Clarke, A. R. Suppression of intestinal and mammary neoplasia by lifetime administration of aspirin in ApcMin/+ and ApcMin/+, Msh2−/− mice. Cancer Res. 61, 7060–7064 (2001).

    CAS  PubMed  Google Scholar 

  67. Burn, J. et al. Effect of aspirin or resistant starch on colorectal neoplasia in the Lynch syndrome. N. Engl. J. Med. 359, 2567–2578 (2008).

    CAS  PubMed  Google Scholar 

  68. Burn, J. et al. Long-term effect of aspirin on cancer risk in carriers of hereditary colorectal cancer: an analysis from the CAPP2 randomised controlled trial. Lancet 378, 2081–2087 (2011).

    PubMed  PubMed Central  Google Scholar 

  69. ISRCTN Registry. Finding the best dose of aspirin to prevent Lynch Syndrome cancers [online], (2015).

  70. Heo, I. & Clevers, H. Expanding intestinal stem cells in culture. Cell Res. 25, 995–996 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Amos-Landgraf, J. M. et al. A target-selected Apc-mutant rat kindred enhances the modeling of familial human colon cancer. Proc. Natl Acad. Sci. USA 104, 4036–4041 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Femia, A. P., Becherucci, C., Crucitta, S. & Caderni, G. Apc-driven colon carcinogenesis in pirc rat is strongly reduced by polyethylene glycol. Int. J. Cancer 137, 2270–2273 (2015).

    CAS  PubMed  Google Scholar 

  73. Taketo, M. M. & Edelmann, W. Mouse models of colon cancer. Gastroenterology 136, 780–798 (2009).

    CAS  PubMed  Google Scholar 

  74. Kucherlapati, M. H. et al. An Msh2 conditional knockout mouse for studying intestinal cancer and testing anticancer agents. Gastroenterology 138, 993–1002.e1 (2010).

    PubMed  Google Scholar 

  75. Colussi, D., Brandi, G., Bazzoli, F. & Ricciardiello, L. Molecular pathways involved in colorectal cancer: implications for disease behavior and prevention. Int. J. Mol. Sci. 14, 16365–16385 (2013).

    PubMed  PubMed Central  Google Scholar 

  76. Samadder, N. J. et al. Effect of sulindac and erlotinib vs placebo on duodenal neoplasia in familial adenomatous polyposis: a randomized clinical trial. JAMA 315, 1266–1275 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhang, L. et al. Chemoprevention of colorectal cancer by targeting APC-deficient cells for apoptosis. Nature 464, 1058–1061 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Baron, J. A. et al. A trial of calcium and vitamin D for the prevention of colorectal adenomas. N. Engl. J. Med. 373, 1519–1530 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Lynch, P. M. et al. Global quantitative assessment of the colorectal polyp burden in familial adenomatous polyposis by using a web-based tool. Gastrointest. Endosc. 77, 455–463 (2013).

    PubMed  PubMed Central  Google Scholar 

  80. European Medicine Agency. Assessment report for celecoxib for the reduction of the number of adenomatous intestinal polyps in familial adenomatous polyposis, as an adjunct to surgery and further endoscopic surveillance [online], (2011).

  81. Lynch, P. M. et al. A proposed staging system and stage-specific interventions for familial adenomatous polyposis. Gastrointest. Endosc. http://dx.doi.org/10.1016/j.gie.2015.12.029 (2016).

  82. Klein, W. A., Miller, H. H., Anderson, M. & DeCosse, J. J. The use of indomethacin, sulindac, and tamoxifen for the treatment of desmoid tumors associated with familial polyposis. Cancer 60, 2863–2868 (1987).

    CAS  PubMed  Google Scholar 

  83. Waddell, W. R. & Kirsch, W. M. Testolactone, sulindac, warfarin, and vitamin K1 for unresectable desmoid tumors. Am. J. Surg. 161, 416–421 (1991).

    CAS  PubMed  Google Scholar 

  84. Moreira, L. et al. Identification of Lynch syndrome among patients with colorectal cancer. JAMA 308, 1555–1565 (2012).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

L.R. is supported by the Italian Association for Cancer Research (AIRC) IG Investigator Grant N. 14281 and the European Community's Seventh Framework Program FP7/2007–2013 under grant agreement 311876, Pathway-27.

Author information

Authors and Affiliations

Authors

Contributions

L.R. researched the data for the article and drafted the manuscript. D.J.A. and P.M.L. edited and reviewed the manuscript and provided a critical contribution to discussions of the content.

Corresponding author

Correspondence to Luigi Ricciardiello.

Ethics declarations

Competing interests

L.R. has received an unrestricted research grant from SLA Pharma UK. D.J.A. serves on the Scientific Advisory Boards for EXACT Sciences and Cancer Prevention Pharmaceuticals. P.M.L. declares no competing interests.

Supplementary information

Supplementary information S1 (table)

Selected clinical randomized, placebo-controlled trials in FAP and Lynch syndrome, and limits in their end point evaluation (PDF 183 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ricciardiello, L., Ahnen, D. & Lynch, P. Chemoprevention of hereditary colon cancers: time for new strategies. Nat Rev Gastroenterol Hepatol 13, 352–361 (2016). https://doi.org/10.1038/nrgastro.2016.56

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2016.56

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer