Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Magnetic polaron on dangling-bond spins in CdSe colloidal nanocrystals

Subjects

This article has been updated

Abstract

Non-magnetic colloidal nanostructures can demonstrate magnetic properties typical for diluted magnetic semiconductors because the spins of dangling bonds at their surface can act as the localized spins of magnetic ions. Here we report the observation of dangling-bond magnetic polarons (DBMPs) in 2.8-nm diameter CdSe colloidal nanocrystals (NCs). The DBMP binding energy of 7 meV is measured from the spectral shift of the emission lines under selective laser excitation. The polaron formation at low temperatures occurs by optical orientation of the dangling-bond spins (DBSs) that result from dangling-bond-assisted radiative recombination of spin-forbidden dark excitons. Modelling of the temperature dependence of the DBMP-binding energy and emission intensity shows that the DBMP is composed of a dark exciton and about 60 DBSs. The exchange integral of one DBS with the electron confined in the NC is 0.12 meV.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: FLN.
Figure 2: Polaron formation.
Figure 3: Dynamics under long-term illumination.
Figure 4: Temperature dependences: experiment and theory.

Similar content being viewed by others

Change history

  • 23 March 2017

    In the version of this Article originally published, in Fig. 3b the uppermost y axis tick mark label should have read '8.5' This has been corrected in all versions of the Article.

References

  1. Takagahara, T. Effects of dielectric confinement and electron–hole exchange interaction on excitonic states in semiconductor quantum dots. Phys. Rev. B 47, 4569–4584 (1993).

    Article  CAS  Google Scholar 

  2. Nirmal, M. et al. Observation of the ‘dark exciton’ in CdSe quantum dots. Phys. Rev. Lett. 75, 3728–3731 (1995).

    Article  CAS  Google Scholar 

  3. Banin, U., Lee, J. C., Guzelian, A. A., Kadavanich, A. V. & Alivisatos, A. P. Exchange interaction in InAs nanocrystal quantum dots. Superlattices Microstruct. 22, 559–568 (1997).

    Article  CAS  Google Scholar 

  4. Efros, Al. L. et al. Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: dark and bright exciton states. Phys. Rev. B 54, 4843–4856 (1996).

    Article  CAS  Google Scholar 

  5. Biadala, L., Louyer, Y., Tamarat, P. H. & Lounis, B. Direct observation of the two lowest exciton zero-phonon lines in single CdSe/ZnS nanocrystals. Phys. Rev. Lett. 103, 037404 (2009).

    Article  CAS  Google Scholar 

  6. Norris, D. J., Yao, N., Charnock, F. T. & Kennedy, T. A. High-quality manganese-doped ZnSe nanocrystals. Nano Lett. 1, 3–7 (2001).

    Article  CAS  Google Scholar 

  7. Beaulac, R., Schneider, L., Archer, P. I., Bacher, G. & Gamelin, D. R. Light-induced spontaneous magnetization in doped colloidal quantum dots. Science 325, 973–976 (2009).

    Article  CAS  Google Scholar 

  8. Nelson, H. D., Bradshaw, L. R., Barrows, C. J., Vlaskin, V. A. & Gamelin, D. R. Picosecond dynamics of excitonic magnetic polarons in colloidal diffusion-doped Cd1–xMnxSe quantum dots. ACS Nano 9, 11177–11191 (2015).

    Article  CAS  Google Scholar 

  9. Rice, W. D. et al. Revealing giant internal magnetic fields due to spin fluctuations in magnetically doped colloidal nanocrystals. Nat. Nanotech. 11, 137–142 (2016).

    Article  CAS  Google Scholar 

  10. Boles, M. A., Ling, D., Hyeon, T. & Talapin, D. V. The surface science of nanocrystals. Nat. Mater. 15, 141–153 (2016).

    Article  CAS  Google Scholar 

  11. Seehra, M. S. et al. Size-controlled ex-nihilo ferromagnetism in capped CdSe quantum dots. Adv. Mater. 20, 1656–1660 (2008).

    Article  CAS  Google Scholar 

  12. Meulenberg, R. W. et al. Evidence for ligand-induced paramagnetism in CdSe quantum dots. J. Am. Chem. Soc. 131, 6888–6889 (2009).

    Article  CAS  Google Scholar 

  13. Shabaev, A., Efros, Al. L. & Efros, A. L. Dark and photo-conductivity in ordered array of nanocrystals. Nano Lett. 13, 5454–5461 (2013).

    Article  CAS  Google Scholar 

  14. Rodina, A. & Efros, Al. L. Magnetic properties of nonmagnetic nanostructures: dangling bond magnetic polaron in CdSe nanocrystals. Nano Lett. 15, 4214–4222 (2015).

    Article  CAS  Google Scholar 

  15. Biadala, L., Louyer, Y., Tamarat, P. H. & Lounis, B. Band-edge exciton fine structure of single CdSe/ZnS nanocrystals in external magnetic fields. Phys. Rev. Lett. 105, 157402 (2010).

    Article  CAS  Google Scholar 

  16. Johnston-Halperin, E. et al. Spin spectroscopy of dark excitons in CdSe quantum dots to 60 T. Phys. Rev. B 63, 205309 (2001).

    Article  Google Scholar 

  17. Nirmal, M., Murray, C. B. & Bawendi, M. G. Fluorescence-line narrowing in CdSe quantum dots: surface localization of the photogenerated exciton. Phys. Rev. B 50, 2293–2300 (1994).

    Article  CAS  Google Scholar 

  18. Del, G. et al. Observation of the full exciton and phonon fine-structure in CdSe/CdS dot-in-rod heteronanocrystals. ACS Nano 8, 5921–5931 (2014).

    Article  Google Scholar 

  19. Fernée, M. J. et al. Acoustic phonon contributions to the emission spectrum of single CdSe nanocrystals. J. Phys. Chem. C 112, 1878–1884 (2008).

    Article  Google Scholar 

  20. Louyer, Y. et al. Efficient biexciton emission in elongated CdSe/ZnS nanocrystals. Nano Lett. 11, 4370–4375 (2011).

    Article  CAS  Google Scholar 

  21. Rodina, A. V. & Efros, Al. L. Radiative recombination from dark excitons: activation mechanisms and polarization properties. Phys. Rev. B 93, 155427 (2016).

    Article  Google Scholar 

  22. Yakovlev, D. R. & Ossau, W. in Introduction to the Physics of Diluted Magnetic Semiconductors (eds Kossut J. & Gaj J. A.) 221–262 (Springer, 2010).

    Book  Google Scholar 

  23. Labeau, O., Tamarat, P. H. & Lounis, B. Temperature dependence of the luminescence lifetime of single CdSe/ZnS quantum dots. Phys. Rev. Lett. 90, 257404 (2003).

    Article  Google Scholar 

  24. De Mello, Donegá, C., Bode, M. & Meijerink, A. Size- and temperature-dependence of exciton lifetimes in CdSe quantum dots. Phys. Rev. B 74, 085320 (2006).

    Article  Google Scholar 

  25. Crooker, S. A., Barrick, T., Hollingsworth, J. A. & Klimov, V. I. Multiple temperature regimes of radiative decay in CdSe nanocrystal quantum dots: intrinsic limits to the dark-exciton lifetime. Appl. Phys. Lett. 82, 2793–2795 (2003).

    Article  CAS  Google Scholar 

  26. Chepic, D. I. et al. Auger ionization of semiconductor quantum drops in a glass matrix. J. Lumin. 47, 113–127 (1990).

    Article  Google Scholar 

  27. Nirmal, M. et al. Fluorescence intermittency in single cadmium selenide nanocrystals. Nature 383, 802–804 (1996).

    Article  CAS  Google Scholar 

  28. Efros, Al. L. & Nesbitt, D. J. Origin and control of blinking in quantum dots. Nat. Nanotech. 11, 661–671 (2016).

    Article  CAS  Google Scholar 

  29. Empedocles, S. A., Neuhauser, R., Shimizu, K. & Bawendi, M. G. Photoluminescence from single semiconductor nanostructures. Adv. Mater. 11, 1243–1256 (1999).

    Article  CAS  Google Scholar 

  30. Empedocles, S. A., Norris, D. J. & Bawendi, M. G. Photoluminescence spectroscopy of single CdSe nanocrystallite quantum dots. Phys. Rev. Lett. 77, 3873–3876 (1996).

    Article  CAS  Google Scholar 

  31. Neuhauser, R. G., Shimizu, K. T., Woo, W. K., Empedocles, S. A. & Bawendi, M. G. Correlation between fluorescence intermittency and spectral diffusion in single semiconductor quantum dot. Phys. Rev. Lett. 85, 3301–3304 (2000).

    Article  CAS  Google Scholar 

  32. Wolff, P. A. in Diluted Magnetic Semiconductors (eds Furdyna J. K. & Kossut J.) 413–454 (Semiconductors and Semimetals 25, Academic, 1988).

    Google Scholar 

  33. Carbone, L. et al. Synthesis and micrometer-scale assembly of colloidal CdSe/CdS nanorods prepared by a seeded growth approach. Nano Lett. 7, 2942–2950 (2007).

    Article  CAS  Google Scholar 

  34. Pinto, G., Fernandes, R. F. et al. Binding of phosphonic acids to CdSe quantum dots: a solution NMR study. J. Phys. Chem. Lett. 2, 145–152 (2011).

    Article  Google Scholar 

  35. Qu, L. & Peng, X. Control of photoluminescence properties of CdSe nanocrystals in growth. J. Am. Chem. Soc. 124, 2049–2055 (2002).

    Article  CAS  Google Scholar 

  36. Jasieniak, J., Smith, L., van Embden, J. V., Mulvaney, P. & Califano, M. Re-examination of the size-dependent absorption properties of CdSe quantum dots. J. Phys. Chem. C 113, 19468–19474 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A.L.E. acknowledges financial support of the Office of Naval Research through the Naval Research Laboratory Basic Research Program and Alexander-von-Humboldt Foundation. E.V.S., A.V.R., D.R.Y. and M.B. acknowledge support from the Deutsche Forschungsgemeinschaft via Sonderforschungsbereich TRR 160 and of the Government of Russia (project number 14.Z50.31.0021, leading scientist M. Bayer). Z.H. and B.D. acknowledge support by the European Commission via the Marie-Sklodowska Curie action Phonsi (H2020-MSCA-ITN-642656). Z.H. acknowledges support by the Belgian Science Policy Office (IAP 7.35, photonics@be) and Ghent University (GOA n01G01513). We thank M. M. Glazov for stimulating discussions.

Author information

Authors and Affiliations

Authors

Contributions

L.B., E.V.S. and B.S. performed the measurements under the guidance of D.R.Y. and M.B. A.V.R. and A.L.E. developed the theoretical model. L.B., E.V.S., A.V.R., D.R.Y. and A.L.E. analysed and interpreted the data. T.A. and M.N. synthesized the NCs under the guidance of Z.H. and B.D. L.B., E.V.S., A.V.R., D.R.Y. and A.L.E. wrote the manuscript with the assistance of all other co-authors.

Corresponding authors

Correspondence to Louis Biadala, Anna V. Rodina or Dmitri R. Yakovlev.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1377 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biadala, L., Shornikova, E., Rodina, A. et al. Magnetic polaron on dangling-bond spins in CdSe colloidal nanocrystals. Nature Nanotech 12, 569–574 (2017). https://doi.org/10.1038/nnano.2017.22

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2017.22

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing