Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Enzymatic reactions in confined environments

Abstract

Within each biological cell, surface- and volume-confined enzymes control a highly complex network of chemical reactions. These reactions are efficient, timely, and spatially defined. Efforts to transfer such appealing features to in vitro systems have led to several successful examples of chemical reactions catalysed by isolated and immobilized enzymes. In most cases, these enzymes are either bound or adsorbed to an insoluble support, physically trapped in a macromolecular network, or encapsulated within compartments. Advanced applications of enzymatic cascade reactions with immobilized enzymes include enzymatic fuel cells and enzymatic nanoreactors, both for in vitro and possible in vivo applications. In this Review, we discuss some of the general principles of enzymatic reactions confined on surfaces, at interfaces, and inside small volumes. We also highlight the similarities and differences between the in vivo and in vitro cases and attempt to critically evaluate some of the necessary future steps to improve our fundamental understanding of these systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Enzyme immobilization on solid supports for surface-confined enzymatic reactions in an aqueous environment.
Figure 2: Examples of surface-confined enzymatic cascade reactions.
Figure 3: Two examples of the application of surface-confined enzymatic reactions.
Figure 4: Volume-confined enzymatic reactions.
Figure 5: Two examples of enzymatic reactions inside vesicles.
Figure 6: Examples of volume-confined enzymatic reactions.
Figure 7: Protein capsule-confined enzymatic reaction, whereby the three enzymes of a cascade reaction were encapsulated at a defined ratio.

Similar content being viewed by others

References

  1. Grunwald, P. Biocatalysis: Biochemical Fundamentals and Applications (Imperial College Press, 2009).

    Google Scholar 

  2. Purich, D. L. Enzyme Kinetics: Catalysis and Control (Elsevier, 2010).

    Google Scholar 

  3. Nagel, Z. D. & Klinman, J. P. A 21st century revisionist's view at a turning point in enzymology. Nature Chem. Biol. 5, 543–550 (2009).

    CAS  Google Scholar 

  4. Ellis, R. J. Macromolecular crowding: obvious but underappreciated. Trends Biochem. Sci. 26, 597–604 (2001).

    CAS  Google Scholar 

  5. Alberts, B. et al. Molecular Biology of the Cell 6th edn (Garland Science, 2015).

    Google Scholar 

  6. Conrado, R. J., Varner, J. D. & DeLisa, M. P. Engineering the spatial organization of metabolic enzymes: mimicking nature's synergy. Curr. Opin. Biotechnol. 19, 492–499 (2008).

    CAS  Google Scholar 

  7. Kunkel, J. & Asuri, P. Function, structure, and stability of enzymes confined in agarose gels. PLoS ONE 9, e86785 (2014).

    Google Scholar 

  8. Schoffelen, S. & van Hest, J. C. M. Chemical approaches for the construction of multi-enzyme reaction systems. Curr. Opin. Struct. Biol. 23, 613–621 (2013).

    CAS  Google Scholar 

  9. Jia, F., Narasimhan, B. & Mallapragada, S. Materials-based strategies for multi-enzyme immobilization and co-localization: a review. Biotechnol. Bioeng. 111, 209–222 (2013).

    Google Scholar 

  10. van Oers, M. C. M., Rutjes, F. P. J. T. & van Hest, J. C. M. Cascade reactions in nanoreactors. Curr. Opin. Biotechnol. 28, 10–16 (2014).

    CAS  Google Scholar 

  11. Mateo, C., Palomo, J. M., Fernandez-Lorente, G., Guisan, J. M. & Fernandez-Lafuente, R. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb. Technol. 40, 1451–1463 (2007).

    CAS  Google Scholar 

  12. Hanefeld, U., Gardossi, L. & Magner, E. Understanding enzyme immobilisation. Chem. Soc. Rev. 38, 453–468 (2009).

    CAS  Google Scholar 

  13. Zhang, Y.-H. P. Substrate channeling and enzyme complexes for biotechnological applications. Biotechnol. Adv. 29, 715–725 (2011).

    CAS  Google Scholar 

  14. Sheldon, R. A. & van Pelt, S. Enzyme immobilisation in biocatalysis: why, what and how. Chem. Soc. Rev. 42, 6223–6235 (2013).

    CAS  Google Scholar 

  15. Nelson, C. J., Li, L. & Millar, H. A. Quantitative analysis of protein turnover in plants. Proteomics 14, 579–592 (2014).

    CAS  Google Scholar 

  16. Rodrigues, R. C., Berenguer-Murcia, Á. & Fernandez-Lafuente, R. Coupling chemical modification and immobilization to improve the catalytic performance of enzymes. Adv. Synth. Catal. 353, 2216–2238 (2011).

    CAS  Google Scholar 

  17. Davis, B. G. & Boyer, V. Biocatalysis and enzymes in organic synthesis. Nat. Prod. Rep. 18, 618–640 (2001).

    CAS  Google Scholar 

  18. Kobayashi, S. & Makino, A. Enzymatic polymer synthesis: an opportunity for green polymer chemistry. Chem. Rev. 109, 5288–5353 (2009).

    CAS  Google Scholar 

  19. Busto, E., Gotor-Fernández, V. & Gotor, V. Hydrolases: catalytically promiscuous enzymes for non-conventional reactions in organic synthesis. Chem. Soc. Rev. 39, 4504–4523 (2010).

    CAS  Google Scholar 

  20. Hollmann, F., Arends, I. W. C. E., Buehler, K., Schallmey, A. & Bühler, B. Enzyme-mediated oxidations for the chemist. Green Chem. 13, 226–265 (2011).

    CAS  Google Scholar 

  21. Reetz, M. F. Biocatalysis in organic chemistry and biotechnology: past, present, and future. J. Am. Chem. Soc. 135, 12480–12496 (2013).

    CAS  Google Scholar 

  22. Kazenwadel, F., Franzreb, M. & Rapp, B. E. Synthetic enzyme supercomplexes: co-immobilization of enzyme cascades. Anal. Methods 7, 4030–4037 (2015).

    CAS  Google Scholar 

  23. Agapakis, C. M., Boyle, P. M. & Silver, P. A. Natural strategies for the spatial optimization of metabolism in synthetic biology. Nature Chem. Biol. 8, 527–535 (2012).

    CAS  Google Scholar 

  24. Ghomashchi, F., Yu, B.-Z., Berg, O., Jain, M. K. & Gelb, M. H. Interfacial catalysis by phospholipase A2: substrate specificity in vesicles. Biochemistry 30, 7318–7329 (1991).

    CAS  Google Scholar 

  25. Sanchez, S. A., Bagatolli, L. A., Gratton, E. & Hazlett, T. L. A two-photon view of an enzyme at work: Crotalus atrox venom PLA2 interaction with single-lipid and mixed-lipid giant unilamellar vesicles. Biophys. J. 82, 2232–2243 (2002).

    CAS  Google Scholar 

  26. Tabaei, S. R., Rabe, M., Zetterberg, H., Zhdanov, V. P. & Ho¨o¨k, F. Single lipid vesicle assay for characterizing single-enzyme kinetics of phospholipid hydrolysis in a complex biological fluid. J. Am. Chem. Soc. 135, 14151–14158 (2013).

    CAS  Google Scholar 

  27. Martinek, K., Levashov, A. V., Klyachko, N. L., Khmelnistki, Y. L. & Berezin, I. V. Micellar enzymology. Eur. J. Biochem. 155, 453–468 (1986).

    CAS  Google Scholar 

  28. Luisi, P. L., Giomini, M., Pileni, M. P. & Robinson, B. H. Reverse micelles as hosts for proteins and small molecules. Biochim. Biophys. Acta 947, 209–246 (1988).

    CAS  Google Scholar 

  29. Carvalho, C. M. L. & Cabral, J. M. S. Reverse micelles as reaction media for lipases. Biochimie 82, 1063–1085 (2000).

    CAS  Google Scholar 

  30. Grandbois, M., Clausen-Schaumann, H. & Gaub, H. Atomic force microscope imaging of phospholipid bilayer degradation by phospholipase A2 . Biophys. J. 74, 2398–2404 (1998).

    CAS  Google Scholar 

  31. Dutta, D., Pulsipher, A. & Yousaf, M. N. PI3 kinase enzymology on fluid lipid bilayers. Analyst 139, 5127–5133 (2014).

    CAS  Google Scholar 

  32. Fornera, S. et al. Sequential immobilization of enzymes in microfluidic channels for cascade reactions. ChemPlusChem 77, 98–101 (2012).

    CAS  Google Scholar 

  33. Küchler, A., Bleich, J. N., Sebastian, B., Dittrich, P. S. & Walde, P. Stable and simple immobilization of proteinase K inside glass tubes and microfluidic channels. ACS Appl. Mater. Interfaces 7, 25970–25980 (2015).

    Google Scholar 

  34. Yu, J., Zhang, Y. & Liu, S. Enzymatic reactivity of glucose oxidase confined in nanochannels. Biosens. Bioelectron. 55, 307–312 (2014).

    CAS  Google Scholar 

  35. Johnson, B. J., Algar, W. R., Malanoski, A. P., Ancona, M. G. & Medintz, I. L. Understanding enzymatic acceleration at nanoparticle interfaces: approaches and challenges. Nano Today 9, 102–131 (2014).

    CAS  Google Scholar 

  36. Vashist, S. K., Lam, E., Hrapovic, S., Male, K. B. & Luong, J. H. T. Immobilization of antibodies and enzymes on 3-aminopropyltriethoxysilane-functionalized bioanalytical platforms for biosensors and diagnostics. Chem. Rev. 114, 11083–11130 (2014).

    CAS  Google Scholar 

  37. Palazzo, G., Colafemmina, G., Guzzoni Iudice, C. & Mallardi, A. Three immobilized enzymes acting in series in layer by layer assemblies: exploiting the trehalase-glucose oxidase-horseradish peroxidase cascade reactions for the optical determination of trehalose. Sensor. Actuat. B 202, 217–223 (2014).

    CAS  Google Scholar 

  38. Fornera, S., Bauer, T., Schlüter, A. D. & Walde, P. Simple enzyme immobilization inside glass tubes for enzymatic cascade reactions. J. Mater. Chem. 22, 502–511 (2012).

    CAS  Google Scholar 

  39. Küchler, A., Adamcik, J., Mezzenga, R., Schlüter, A. D. & Walde, P. Enzyme immobilization on silicate glass through simple adsorption of dendronized polymer-enzyme conjugates for localized enzymatic cascade reactions. RSC Adv. 5, 44530–44544 (2015).

    Google Scholar 

  40. Linko, V., Eerikäinen, M. & Kostiainen, M. A. A modular DNA origami-based enzyme cascade nanoreactor. Chem. Commun. 51, 5351–5354 (2015).

    CAS  Google Scholar 

  41. Castellana, M. et al. Enzyme clustering accelerates processing of intermediates through metabolic channeling. Nature Biotechnol. 32, 1011–1018 (2014).

    CAS  Google Scholar 

  42. Fu, J., Liu, M., Liu, Y., Woodbury, N. W. & Yan, H. Interenzyme substrate diffusion for an enzyme cascade organized on spatially addressable DNA nanostructures. J. Am. Chem. Soc. 134, 5516–5519 (2012).

    CAS  Google Scholar 

  43. Wu, F. & Minteer, S. Krebs cycle metabolon: structural evidence of substrate channeling revealed by cross-linking and mass spectrometry. Angew. Chem. Int. Ed. 54, 1851–1854 (2015).

    CAS  Google Scholar 

  44. Dueber, J. E. et al. Synthetic protein scaffolds provide modular control over metabolic flux. Nature Biotechnol. 27, 753–759 (2009).

    CAS  Google Scholar 

  45. Gustafsson, H., Küchler, A., Holmberg, K. & Walde, P. Co-immobilization of enzymes with the help of a dendronized polymer and mesoporous silica nanoparticles. J. Mater. Chem. B 3, 6174–6184 (2015).

    CAS  Google Scholar 

  46. Kang, W. et al. Cascade biocatalysis by multienzyme−nanoparticle assemblies. Bioconjugate Chem. 25, 1387–1394 (2014).

    CAS  Google Scholar 

  47. You, C.-C., Agasti, S. S., De, M., Knapp, M. J. & Rotello, V. M. Modulation of the catalytic behavior of α-chymotrypsin at monolayer-protected nanoparticle surfaces. J. Am. Chem. Soc. 128, 14612–14618 (2006).

    CAS  Google Scholar 

  48. Kim, J., Jia, H. & Wang, P. Challenges in biocatalysis for enzyme-based biofuel cells. Biotechnol. Adv. 24, 296–308 (2006).

    CAS  Google Scholar 

  49. Willner, I., Yan, Y.-M., Willner, B. & Tel-Vered, R. Integrated enzyme-based biofuel cells: a review. Fuel Cells 9, 7–24 (2009).

    CAS  Google Scholar 

  50. Osman, M. H., Shah, A. A. & Walsh, F. C. Recent progress and continuing challenges in bio-fuel cells. Part I: enzymatic cells. Biosens. Bioelectron. 26, 3087–3102 (2011).

    CAS  Google Scholar 

  51. Leech, D., Kavanagh, P. & Schuhmann, W. Enzymatic fuel cells: recent progress. Electrochim. Acta 84, 223–234 (2012).

    CAS  Google Scholar 

  52. Kim, Y. H., Campbell, E., Yu, J., Minteer, S. D. & Banta, S. Complete oxidation of methanol in biobattery devices using a hydrogel created from three modified dehydrogenases. Angew. Chem. 125, 1477–1480 (2013).

    Google Scholar 

  53. de Poulpiquet, A., Ciaccafava, A. & Lojou, A. New trends in enzyme immobilization at nanostructured interfaces for efficient electrocatalysis in biofuel cells. Electrochim. Acta 126, 104–114 (2014).

    CAS  Google Scholar 

  54. Luz, R. A. S., Pereira, A. R., de Souza, J. C. P., Sales, F. C. P. F. & Crespilho, F. N. Enzyme biofuel cells: thermodynamics, kinetics and challenges in applicability. ChemElectroChem 1, 1751–1777 (2014).

    CAS  Google Scholar 

  55. Heller, A. & Feldman, B. Electrochemical glucose sensors and their applications in diabetes management. Chem. Rev. 108, 2482–2505 (2008).

    CAS  Google Scholar 

  56. Tsujimura, S., Murata, K. & Akatsuka, W. Exceptionally high glucose current on a hierarchically structured porous carbon electrode with “wired” flavin adenine dinucleotide-dependent glucose dehydrogenase. J. Am. Chem. Soc. 136, 14432–14437 (2014).

    CAS  Google Scholar 

  57. Ohara, T. J., Rajagopalan, R. & Heller, A. Glucose electrodes based on cross-linked [Os(bpy)2CI]+/2+ complexed poly(1-vinylimidazole) films. Anal. Chem. 65, 3512–3517 (1993).

    CAS  Google Scholar 

  58. Junker, K. et al. Mechanistic aspects of the horseradish peroxidase-catalysed polymerisation of aniline in the presence of AOT vesicles as templates. RSC Adv. 2, 6478–6495 (2012).

    CAS  Google Scholar 

  59. Walde, P., Umakoshi, H., Stano, P. & Mavelli, F. Emergent properties arising from the assembly of amphiphiles. Artificial vesicle membranes as reaction promoters and regulators. Chem. Commun. 50, 10177–10197 (2014).

    CAS  Google Scholar 

  60. Chen, A. H. & Silver, P. A. Designing biological compartmentalization. Trends Cell Biol. 22, 662–670 (2012).

    CAS  Google Scholar 

  61. Satori, C. P. et al. Bioanalysis of eukaryotic organelles. Chem. Rev. 113, 2733–2811 (2013).

    CAS  Google Scholar 

  62. Chowdhury, C., Sinha, S., Chun, S., Yeates, T. O. & Bobik, T. A. Diverse bacterial microcompartment organelles. Microbiol. Mol. Biol. Rev. 78, 438–468 (2014).

    CAS  Google Scholar 

  63. Yeates, T. O., Kerfeld, C. A., Heinhorst, S., Cannon, G. C. & Shively, J. M. Protein-based organelles in bacteria: carboxysomes and related microcompartments. Nature Rev. Microbiol. 6, 681–691 (2008).

    CAS  Google Scholar 

  64. Lee, H., DeLoache, W. C. & Dueber, J. E. Spatial organization of enzymes for metabolic engineering. Metabol. Eng. 14, 242–251 (2012).

    CAS  Google Scholar 

  65. Cannon, G. C., Heinhorst, S. & Kerfeld, C. A. Carboxysomal carbonic anhydrases: structure and role in microbial CO2 fixation. Biochim. Biophys. Acta 1804, 382–392 (2010).

    CAS  Google Scholar 

  66. Kerfeld, C. A., Heinhorst, S. & Cannon, G. C. Bacterial microcompartments. Annu. Rev. Microbiol. 64, 391–408 (2010).

    CAS  Google Scholar 

  67. Heinhorst, S. et al. Characterization of the carboxysomal carbonic anhydrase CsoSCA from Halothiobacillus neapolitanus. J. Bacteriol. 188, 8087–8094 (2006).

    CAS  Google Scholar 

  68. Walde, P. & Ichikawa, S. Enzymes inside lipid vesicles: preparation, reactivity and applications. Biomol. Eng. 18, 143–177 (2001).

    CAS  Google Scholar 

  69. Walde, P., Cosentino, K., Engel, H. & Stano, P. Giant vesicles: preparations and applications. ChemBioChem 11, 848–865 (2010).

    CAS  Google Scholar 

  70. Theberge, A. B. et al. Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology. Angew. Chem. Int. Ed. 49, 5846–5868 (2010).

    CAS  Google Scholar 

  71. Christensen, S. M., Bolinger, P.-Y., Hatzakis, N. S., Mortensen, M. W. & Stamou, D. Mixing subattolitre volumes in a quantitative and highly parallel manner with soft matter nanofluidics. Nature Nanotech. 7, 51–55 (2012).

    CAS  Google Scholar 

  72. Miyake, Y. Enzymatic reaction in water-in-oil microemulsions. Colloid. Surf. A 109, 255–262 (1996).

    CAS  Google Scholar 

  73. Ruckenstein, E. & Karpe, P. Enzymatic super- and subactivity in nonionic reverse micelles. J. Phys. Chem. 95, 4869–4882 (1991).

    CAS  Google Scholar 

  74. Walde, P. & Marzetta, B. Bilayer permeability-based substrate selectivity of an enzyme in liposomes. Biotechnol. Bioeng. 57, 216–219 (1998).

    CAS  Google Scholar 

  75. Yoshimoto, M., Okamoto, M., Ujihashi, K. & Okita, T. Selective oxidation of D-amino acids catalyzed by oligolamellar liposomes intercalated with D-amino acid oxidase. Langmuir 30, 6180–6186 (2014).

    CAS  Google Scholar 

  76. Chowdhury, C. et al. Selective molecular transport through the protein shell of a bacterial microcompartment organelle. Proc. Natl Acad. Sci. USA 112, 2990–2995 (2015).

    CAS  Google Scholar 

  77. Glasgow, J. E., Asensio, M. A., Jakobson, C. M., Francis, M. B. & Tullman-Ercek, D. Influence of electrostatics on small molecule flux through a protein nanoreactor. ACS Synth. Biol. 4, 1011–1019 (2015).

    CAS  Google Scholar 

  78. Weitz, M. et al. Diversity in the dynamical behaviour of a compartmentalized programmable biochemical oscillator. Nature Chem. 6, 295–302 (2014).

    CAS  Google Scholar 

  79. Karig, D. K., Jung, S.-Y., Srijanto, B., Collier, C. P. & Simpson, M. L. Probing cell-free gene expression noise in femtoliter volumes. ACS Synth. Biol. 2, 497–505 (2013).

    CAS  Google Scholar 

  80. Sintra, T. E., Ventura, S. P. M. & Coutinho, J. A. P. Superactivity induced by micellar systems as the key for boosting the yield of enzymatic reactions. J. Mol. Catal. B 107, 140–151 (2014).

    CAS  Google Scholar 

  81. Moyano, F., Falcone, R. D., Mejuto, J. C., Silber, J. J. & Correa, N. M. Cationic reverse micelles create water with super hydrogen-bond-donor capacity for enzymatic catalysis: hydrolysis of 2-naphthyl acetate by α-chymotrypsin. Chem. Eur. J. 16, 8887–8893 (2010).

    CAS  Google Scholar 

  82. Biswas, R. et al. Spectroscopic studies of catanionic reverse microemulsion: correlation with the superactivity of horseradish peroxidase enzyme in a restricted environment. J. Phys. Chem. B 112, 6620–6628 (2008).

    CAS  Google Scholar 

  83. Moniruzzaman, M., Kamiya, N. & Goto, M. Biocatalysis in water-in-ionic liquid microemulsions: a case study with horseradish peroxidase. Langmuir 25, 977–982 (2009).

    CAS  Google Scholar 

  84. Pereira de Souza, T., Stano, P. & Luisi, P. L. The minimal size of liposome-based model cells brings about a remarkably enhanced entrapment and protein synthesis. ChemBioChem 10, 1056–1063 (2009).

    CAS  Google Scholar 

  85. Nourian, Z., Roelofsen, W. & Danelon, C. Triggered gene expression in fed-vesicle microreactors with a multifunctional membrane. Angew. Chem. Int. Ed. 51, 3114–3118 (2012).

    CAS  Google Scholar 

  86. Nishimura, K., Tsuru, S., Suzuki, H. & Yomo, T. Stochasticity in gene expression in a cell-sized compartment. ACS Synth. Biol. 4, 566–576 (2015).

    CAS  Google Scholar 

  87. Mavelli, F. & Stano, P. Experiments and numerical modelling on the capture and concentration of transcription-translation machinery inside vesicles. Artif. Life 21, 1–19 (2015).

    Google Scholar 

  88. Petrovics, I. et al. Antagonism of paraoxon intoxication by recombinant phosphotriesterase encapsulated within sterically stabilized liposomes. Toxicol. Appl. Pharmacol. 156, 56–63 (1999).

    Google Scholar 

  89. Torchilin, V. Recent advances with liposomes as pharmaceutical carriers. Nature Rev. Drug. Discov. 4, 145–160 (2005).

    CAS  Google Scholar 

  90. Yoshimoto, M. et al. Novel immobilized liposomal glucose oxidase system using the channel protein OmpF and catalase. Biotechnol. Bioeng. 90, 231–238 (2005).

    CAS  Google Scholar 

  91. Peters, R. J. R. W. et al. Cascade reactions in multicompartmentalized polymersomes. Angew. Chem. Int. Ed. 53, 146–150 (2014).

    CAS  Google Scholar 

  92. Louzao, I. & van Hest, J. C. M. Permeability effects on the efficiency of antioxidant nanoreactors. Biomacromolecules 14, 2364–2372 (2013).

    CAS  Google Scholar 

  93. Patterson, D. P., Schwarz, B., Waters, R. S., Gedeon, T. & Douglas, T. Encapsulation of an enzyme cascade within the bacteriophage P22 virus-like particle. ACS Chem. Biol. 9, 359–365 (2014).

    CAS  Google Scholar 

  94. Chen, R. et al. Biomolecular scaffolds for enhanced signaling and catalytic efficiency. Curr. Opin. Biotechnol. 28, 59–68 (2014).

    CAS  Google Scholar 

  95. Patterson, D. P., Prevelige, P. E. & Douglas, T. Nanoreactors by programmed enzyme encapsulation inside the capsid of the bacteriophage P22. ACS Nano 6, 5000–5009 (2012).

    CAS  Google Scholar 

  96. Bobik, T. A., Lehman, B. P. & Yeates, T. O. Bacterial microcompartments: widespread prokaryotic organelles for isolation and optimization of metabolic pathways. Mol. Microbiol. 98, 193–207 (2015).

    CAS  Google Scholar 

  97. Ariga, K. et al. Enzyme nanoarchitectonics: organization and device application. Chem. Soc. Rev. 42, 6322–6345 (2013).

    CAS  Google Scholar 

  98. Rasmussen, M., Abdellaoui, S. & Minteer, S. D. Enzymatic biofuel cells: 30 years of critical advancements. Biosens. Bioelectron. 76, 91–102 (2016).

    CAS  Google Scholar 

  99. Marguet, M., Bonduelle, C. & Lecommandoux, S. Multicompartmentalized polymeric systems: towards biomimetic cellular structure and function. Chem. Soc. Rev. 42, 512–529 (2013).

    CAS  Google Scholar 

  100. Tanner, P., Balasubramanian, V. & Palivan, C. G. Aiding nature's organelles: artificial peroxisomes play their role. Nano Lett. 13, 2875–2883 (2013).

    CAS  Google Scholar 

  101. Kim, E. Y. & Tullman-Ercek, D. Engineering nanoscale protein compartments for synthetic organelles. Curr. Opin. Biotechnol. 24, 627–632 (2013).

    CAS  Google Scholar 

  102. Hansen, M. M. K. et al. Macromolecular crowding creates heterogeneous environments of gene expression in picolitre droplets. Nature Nanotech. 11, 191–197 (2016).

    CAS  Google Scholar 

  103. Stano, P. & Luisi, P. L. Achievements and open questions in the self-reproduction of vesicles and synthetic minimal cells. Chem. Commun. 46, 3639–3653 (2010).

    CAS  Google Scholar 

  104. Ishitsuka, Y., Okumus, B., Arslan, S., Chen, K. H. & Ha, T. Temperature-independent porous nanocontainers for single-molecule fluorescence studies. Anal. Chem. 82, 9694–9701 (2010).

    CAS  Google Scholar 

  105. Christensen, A. L., Lohr, C., Christensen, S. M. & Stamou, D. Single vesicle biochips for ultra-miniaturized nanoscale fluidics and single molecule bioscience. Lab Chip 13, 3613–3625 (2013).

    CAS  Google Scholar 

  106. Piwonski, H. M., Goomanovsky, M., Bensimon, D., Horovitz, A. & Haran, G. Allosteric inhibition of individual enzyme molecules trapped in lipid vesicles. Proc. Natl Acad. Sci. USA 109, E1437–E1443 (2012).

    CAS  Google Scholar 

  107. Pavlidis, I. V., Patila, M., Bornscheuer, U. T., Gournis, D. & Stamatis, H. Graphene-based nanobiocatalytic systems: recent advances and future prospects. Trends Biotechnol. 32, 312–320 (2014).

    CAS  Google Scholar 

  108. Fang, W. & Ji, P. Enzymes immobilized on carbon nanotubes. Biotechnol. Adv. 29, 889–895 (2011).

    Google Scholar 

  109. Magner, E. Immobilisation of enzymes on mesoporous silicate materials. Chem. Soc. Rev. 42, 6213–6266 (2013).

    CAS  Google Scholar 

  110. Nandiyanto, A. B. D., Kim, S.-G., Iskandar, F. & Okuyama, K. Synthesis of spherical mesoporous silica nanoparticles with nanometer-size controllable pores and outer diameters. Micropor. Mesopor. Mater. 120, 447–453 (2009).

    CAS  Google Scholar 

  111. Jia, H., Zhu, G. & Wang, P. Catalytic behaviors of enzymes attached to nanoparticles: the effect of particle mobility. Biotechnol. Bioeng. 84, 406–414 (2003).

    CAS  Google Scholar 

  112. Yoshimoto, M., Sakamoto, H. & Shirakami, H. Covalent conjugation of tetrameric bovine liver catalase to liposome membranes for stabilization of the enzyme tertiary and quaternary structures. Colloid. Surf. B 69, 281–287 (2009).

    CAS  Google Scholar 

  113. Huang, X., Li, M. & Mann, S. Membrane-mediated cascade reactions by enzyme–polymer proteinosomes. Chem. Commun. 50, 6278–6280 (2014).

    CAS  Google Scholar 

  114. Park, M., Sun, Q., Liu, F., DeLisa, M. & Chen, W. Positional assembly of enzymes on bacterial outer membrane vesicles for cascade reactions. PLoS ONE 9, e97103 (2014).

    Google Scholar 

  115. Liu, F., Banta, S. & Chen, W. Functional assembly of a multi-enzyme methanol oxidation cascade on a surface-displayed trifunctional scaffold for enhanced NADH production. Chem. Commun. 49, 3766–3768 (2013).

    CAS  Google Scholar 

  116. Meredith, M. T. & Minteer, S. D. Biofuel cells: enhanced enzymatic bioelectrocatalysis. Annu. Rev. Anal. Chem. 5, 157–179 (2012).

    CAS  Google Scholar 

  117. Orlich, B. & Schomäcker, R. Enzyme catalysis in reverse micelles. Adv. Biochem. Eng. Biotechnol. 75, 185–208 (2002).

    CAS  Google Scholar 

  118. Liu, Y., Jung, S.-Y. & Collier, C. P. Shear-driven redistribution of surfactant affects enzyme activity in well-mixed femtoliter droplets. Anal. Chem. 81, 4922–4928 (2009).

    CAS  Google Scholar 

  119. Nardin, C., Widmer, J., Winterhalter, M. & Meier, W. Amphiphilic block copolymer nanocontainers as bioreactors. Eur. Phys. J. E 4, 403–410 (2001).

    CAS  Google Scholar 

  120. Chen, Q., Schönherr, H. & Vancso, G. J. Block-copolymer vesicles as nanoreactors for enzymatic reactions. Small 5, 1436–1445 (2009).

    CAS  Google Scholar 

  121. Vriezema, D. M. et al. Positional assembly of enzymes in polymersome nanoreactors for cascade reactions. Angew. Chem. 119, 7522–7526 (2007).

    Google Scholar 

  122. Hansen, J. S., Elbing, K., Thompson, J. R., Malmstadt, N. & Lindkvist-Petersson, K. Glucose transport machinery reconstituted in cell models. Chem. Commun. 51, 2316–2319 (2015).

    CAS  Google Scholar 

  123. Comellas-Aragonès, M. et al. A virus-based single-enzyme nanoreactor. Nature Nanotech. 2, 635–639 (2007).

    Google Scholar 

  124. Price, A. D., Zelikin, A. N., Wang, Y. & Caruso, F. Triggered enzymatic degradation of DNA within selectively permeable polymer capsule microreactors. Angew. Chem. Int. Ed. 48, 329–332 (2009).

    CAS  Google Scholar 

  125. Kreft, O., Prevot, M., Möhwald, H. & Sukhorukov, G. B. Shell-in-shell microcapsules: a novel tool for integrated, spatially confined enzymatic reactions. Angew. Chem. Int. Ed. 46, 5605–5608 (2007).

    CAS  Google Scholar 

  126. Sakr, O. S. & Borchard, G. Encapsulation of enzymes in layer-by-layer (LbL) structures: latest advances and applications. Biomacromolecules 14, 2117–2135 (2013).

    CAS  Google Scholar 

  127. Hosta-Rigau, L., York-Duran, M. J., Zhang, Y., Goldie, K. N. & Sta¨dler, B. Confined multiple enzymatic (cascade) reactions within poly(dopamine)-based capsosomes. ACS Appl. Mater. Interfaces 6, 12771–12779 (2014).

    CAS  Google Scholar 

  128. Gorris, H. H. & Walt, D. R. Mechanistic aspects of horseradish peroxidase elucidated through single-molecule studies. J. Am. Chem. Soc. 131, 6277–6282 (2009).

    CAS  Google Scholar 

  129. Liebherr, R. B. & Gorris, H. H. Enzyme molecules in solitary confinement. Molecules 19, 14417–14445 (2014).

    Google Scholar 

Download references

Acknowledgements

Financial support for the stimulating meetings of the COST action CM1304 on the 'Emergence and Evolution of Complex Chemical systems' is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Walde.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Küchler, A., Yoshimoto, M., Luginbühl, S. et al. Enzymatic reactions in confined environments. Nature Nanotech 11, 409–420 (2016). https://doi.org/10.1038/nnano.2016.54

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2016.54

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing