Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Surface imaging beyond the diffraction limit with optically trapped spheres

Abstract

Optical traps play an increasing role in the bionanosciences because of their ability to apply forces flexibly on tiny structures in fluid environments. Combined with particle-tracking techniques, they allow the sensing of miniscule forces exerted on these structures. Similar to atomic force microscopy (AFM), but much more sensitive, an optically trapped probe can be scanned across a structured surface to measure the height profile from the displacements of the probe. Here we demonstrate that, by the combination of a time-shared twin-optical trap and nanometre-precise three-dimensional interferometric particle tracking, both reliable height profiling and surface imaging are possible with a spatial resolution below the diffraction limit. The technique exploits the high-energy thermal position fluctuations of the trapped probe, and leads to a sampling of the surface 5,000 times softer than in AFM. The measured height and force profiles from test structures and Helicobacter cells illustrate the potential to uncover specific properties of hard and soft surfaces.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dual-beam scanning process.
Figure 2: Scanning results.
Figure 3: Height-profile mapping.
Figure 4: Spatial image resolution.
Figure 5: Imaging different sample materials.
Figure 6: Force microscopy of H. pylori.

Similar content being viewed by others

References

  1. Santos, N. C. & Castahno, M. A. R. B. An overview of the biophysical applications of atomic force microscopy. Biophys. Chem. 107, 133–149 (2004).

    Article  CAS  Google Scholar 

  2. Somorjai, G. A. & Li, Y. Impact of surface chemistry. Proc. Natl Acad. Sci. USA 108, 917–924 (2011).

    Article  CAS  Google Scholar 

  3. Hoerber, J. K. H. & Miles, A. M. J. Scanning probe evolution in biology. Science 302, 1002–1005 (2003).

    Article  CAS  Google Scholar 

  4. Dufrene, Y. F. et al. Multiparametric imaging of biological systems by force–distance curve-based AFM. Nature Methods 10, 847–854 (2013).

    Article  CAS  Google Scholar 

  5. Dupres, V. et al. Nanoscale mapping and functional analysis of individual adhesins on living bacteria. Nature Methods 2, 515–520 (2005).

    Article  CAS  Google Scholar 

  6. Ludwig, T. et al. Probing cellular microenvironments and tissue remodeling by atomic force microscopy. Pflügers Archiv Eur. J. Physiol. 456, 29–49 (2008).

    Article  CAS  Google Scholar 

  7. Wiggins, P. A. et al. High flexibility of DNA on short length scales probed by atomic force microscopy. Nature Nanotech. 1, 137–141 (2006).

    Article  CAS  Google Scholar 

  8. Malmqvist, L. & Hertz, H. M. Trapped particle optical microscopy. Opt. Commun. 94, 19–24 (1992).

    Article  Google Scholar 

  9. Ghislain, L. P. & Webb, W. W. Scanning-force microscope based on an optical trap. Opt. Lett. 18, 1678–1680 (1993).

    Article  CAS  Google Scholar 

  10. Kawata, S., Inouye, Y. & Sugiura, T. Near-field scanning optical microscope with a laser trapped probe. Jpn J. Appl. Phys. 33, L1725–L1727 (1994).

    Article  CAS  Google Scholar 

  11. Florin, E.-L. et al. Photonic force microscope based on optical tweezers and two-photon excitation for biological applications. J. Struct. Biol. 119, 202–211 (1997).

    Article  CAS  Google Scholar 

  12. Sugiura, T. et al. Gold-bead scanning near-field optical microscope with laser-force position control. Opt. Lett. 22, 1663–1665 (1997).

    Article  CAS  Google Scholar 

  13. Friese, M. E. J. et al. Three-dimensional imaging with optical tweezers. Appl. Opt. 38, 6597–6603 (1999).

    Article  CAS  Google Scholar 

  14. Tischer, C. et al. Three-dimensional thermal noise imaging. Appl. Phys. Lett. 79, 3878 (2001).

    Article  CAS  Google Scholar 

  15. Pralle, A. et al. Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light. Microsc. Res. Tech. 44, 378–386 (1999).

    Article  CAS  Google Scholar 

  16. Neuman, K. C. et al. Ubiquitous transcriptional pausing is independent of RNA polymerase backtracking. Cell 115, 437–447 (2003).

    Article  CAS  Google Scholar 

  17. Bormuth, V. et al. Protein friction limits diffusive and directed movements of kinesin motors on microtubules. Science 325, 870–873 (2009).

    Article  CAS  Google Scholar 

  18. Becker, N. et al. Three-dimensional bead position histograms reveal single-molecule nano-mechanics. Phys. Rev. E 71, 021907 (2005).

    Article  Google Scholar 

  19. Koch, M. & Rohrbach, A. Object adapted optical trapping and shape tracking of energy switching helical bacteria. Nature Photonics 6, 680–686 (2012).

    Article  CAS  Google Scholar 

  20. Rohrbach, A., Kress, H. & Stelzer, E. H. K. Three-dimensional tracking of small spheres in focused laser beams: influence of the detection angular aperture. Opt. Lett. 28, 411–413 (2003).

    Article  Google Scholar 

  21. Dreyer, J. K., Berg-Sørensen, K. & Oddershede, L. B. Improved axial position detection in optical tweezers measurements. Appl. Opt. 43, 1991–1995 (2004).

    Article  Google Scholar 

  22. Rohrbach, A. et al. Trapping and tracking a local probe with a photonic force microscope. Rev. Sci. Instrum. 75, 2197–2210 (2004).

    Article  CAS  Google Scholar 

  23. Friedrich, L. & Rohrbach, A. Improved interferometric tracking of trapped particles using two frequency-detuned beams. Opt. Lett. 35, 1920–1922 (2010).

    Article  Google Scholar 

  24. Seitz, P. C., Stelzer, E. H. K. & Rohrbach, A. Interferometric tracking of optically trapped probes behind structured surfaces: a phase correction method. Appl. Opt. 45, 7309–7315 (2006).

    Article  Google Scholar 

  25. Phillips, D. B. et al. Surface imaging using holographic optical tweezers. Nanotechnology 22, 285503 (2011).

    Article  CAS  Google Scholar 

  26. Phillips, D. B. et al. An optically actuated surface scanning probe. Opt. Express 20, 29679–29693 (2012).

    Article  CAS  Google Scholar 

  27. Phillips, D. B. et al. Shape-induced force fields in optical trapping. Nature Photonics 8, 400–405 (2014).

    Article  CAS  Google Scholar 

  28. Nakayama, Y. et al. Tunable nanowire nonlinear optical probe. Nature 447, 1098–1101 (2007).

    Article  CAS  Google Scholar 

  29. Rohde, M. et al. A novel sheathed surface organelle of the Helicobacter pylori CAG type IV secretion system. Mol. Microbiol. 49, 219–234 (2003).

    Article  CAS  Google Scholar 

  30. Andersson, M. et al. A structural basis for sustained bacterial adhesion: biomechanical properties of CFA/I pili. J. Mol. Biol. 415, 918–928 (2012).

    Article  CAS  Google Scholar 

  31. Jannasch, A. et al. Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres. Nature Photonics 6, 469–473 (2012).

    Article  CAS  Google Scholar 

  32. Grießhammer, M. & Rohrbach, A. 5D-tracking of a nano-rod in a focused laser beam—a theoretical model. Opt. Express 22, 6114–6132 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank M. Koch, D. Ruh, A. Seifert and T. Henze for a careful reading of the manuscript and/or for helpful discussions. We also thank B. Waidner for helping with the H. pylori bacteria and C. Müller for support with the SEM-image acquisition.

Author information

Authors and Affiliations

Authors

Contributions

L.F. performed the experiments, analysed the data and prepared all the graphs. A.R. initiated and supervised the project. A.R. and L.F. co-wrote the manuscript.

Corresponding author

Correspondence to Alexander Rohrbach.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 911 kb)

Supplementary information

Supplementary Movie 1 (AVI 3691 kb)

Supplementary information

Supplementary Movie 2 (MOV 1449 kb)

Supplementary information

Supplementary Movie 3 (AVI 5706 kb)

Supplementary information

Supplementary Movie 4 (AVI 3691 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Friedrich, L., Rohrbach, A. Surface imaging beyond the diffraction limit with optically trapped spheres. Nature Nanotech 10, 1064–1069 (2015). https://doi.org/10.1038/nnano.2015.202

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.202

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing