Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Photoluminescence imaging of electronic-impurity-induced exciton quenching in single-walled carbon nanotubes

Abstract

The electronic properties of single-walled carbon nanotubes can be altered by surface adsorption of electronic impurities or dopants. However, fully understanding the influence of these impurities is difficult because of the inherent complexity of the solution-based colloidal chemistry of nanotubes, and because of a lack of techniques for directly imaging dynamic processes involving these impurities. Here, we show that photoluminescence microscopy can be used to image exciton quenching in semiconducting single-walled carbon nanotubes during the early stages of chemical doping with two different species. The addition of AuCl3 leads to localized exciton-quenching sites, which are attributed to a mid-gap electronic impurity level, and the adsorbed species are also found sometimes to be mobile on the surface of the nanotubes. The addition of H2O2 leads to delocalized exciton-quenching hole states, which are responsible for long-range photoluminescence blinking, and are also mobile.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electronic impurities in single-walled carbon nanotubes.
Figure 2: Localized electronic impurity.
Figure 3: Delocalized electronic impurity.
Figure 4: Long-range quenching.
Figure 5: Delocalized electronic impurity mobility.
Figure 6: Localized electronic impurity mobility.

Similar content being viewed by others

References

  1. Avouris, P. Carbon nanotube electronics. Chem. Phys. 281, 429–445 (2002).

    Article  CAS  Google Scholar 

  2. Avouris, P., Freitag, M. & Perebeinos, V. Carbon-nanotube photonics and optoelectronics. Nature Photon. 2, 341–350 (2008).

    Article  CAS  Google Scholar 

  3. Dresselhaus, M. S., Dresselhaus, G., Saito, R. & Jorio, A. Exciton photophysics of carbon nanotubes. Annu. Rev. Phys. Chem. 58, 719–747 (2007).

    Article  CAS  Google Scholar 

  4. Charlier, J-C., Blase, X. & Roche, S. Electronic and transport properties of nanotubes. Rev. Mod. Phys. 79, 677–732 (2007).

    Article  CAS  Google Scholar 

  5. Duclaux, L. Review of the doping of carbon nanotubes (multiwalled and single-walled. Carbon 40, 1751–1764 (2002).

    Article  CAS  Google Scholar 

  6. O'Connell, M. J., Eibergen, E. E. & Doorn, S. K. Chiral selectivity in the charge-transfer bleaching of single-walled carbon-nanotube spectra. Nature Mater. 4, 412–418 (2005).

    Article  CAS  Google Scholar 

  7. Cognet, L. et al. Stepwise quenching of exciton fluorescence in carbon nanotubes by single-molecule reactions. Science 316, 1465–1468 (2007).

    Article  CAS  Google Scholar 

  8. Harutyunyan, H. et al. Defect-induced photoluminescence from dark excitonic states in individual single-walled carbon nanotubes. Nano Lett. 9, 2010–2014 (2009).

    Article  CAS  Google Scholar 

  9. Choi, H. C., Shim, M., Bangsaruntip, S. & Dai, H. Spontaneous reduction of metal ions on the sidewalls of carbon nanotubes. J. Am. Chem. Soc. 124, 9058–9059 (2002).

    Article  CAS  Google Scholar 

  10. Kim, S. M. et al. Role of anions in the AuCl3-doping of carbon nanotubes. ACS Nano 5, 1236–1242 (2011).

    Article  CAS  Google Scholar 

  11. Durgun, E., Dag, S., Ciraci, S. & Gülseren, O. Energetics and electronic structures of individual atoms adsorbed on carbon nanotubes. J. Phys. Chem. B 108, 575–582 (2004).

    Article  CAS  Google Scholar 

  12. Duong, D. L. et al. Carbon nanotube doping mechanism in a salt solution and hygroscopic effect: density functional theory. ACS Nano 4, 5430–5436 (2010).

    Article  CAS  Google Scholar 

  13. Jin, H., Heller, D. A., Kim, J-H. & Strano, M. S. Stochastic analysis of stepwise fluorescence quenching reactions on single-walled carbon nanotubes: single molecule sensors. Nano Lett. 8, 4299–4304 (2008).

    Article  CAS  Google Scholar 

  14. Song, C., Pehrsson, P. E. & Zhao, W. Recoverable solution reaction of HiPco carbon nanotubes with hydrogen peroxide. J. Phys. Chem. B 109, 21634–21639 (2005).

    Article  CAS  Google Scholar 

  15. Jhi, S-H., Louie, S. G. & Cohen, M. L. Electronic properties of oxidized carbon nanotubes. Phys. Rev. Lett. 85, 1710–1713 (2000).

    Article  CAS  Google Scholar 

  16. Dukovic, G. et al. Reversible surface oxidation and efficient luminescence quenching in semiconductor single-wall carbon nanotubes. J. Am. Chem. Soc. 126, 15269–15276 (2004).

    Article  CAS  Google Scholar 

  17. McDonald, T. J., Blackburn, J. L., Metzger, W. K., Rumbles, G. & Heben, M. J. Chiral-selective protection of single-walled carbon nanotube photoluminescence by surfactant selection. J. Phys. Chem. C 111, 17894–17900 (2007).

    Article  CAS  Google Scholar 

  18. Ghosh, S., Bachilo, S. M., Simonette, R. A., Beckingham, K. M. & Weisman, R. B. Oxygen doping modifies near-infrared band gaps in fluorescent single-walled carbon nanotubes. Science 330, 1656–1659 (2010).

    Article  CAS  Google Scholar 

  19. Siitonen, A. J., Tsyboulski, D. A., Bachilo, S. M. & Weisman, R. B. Surfactant-dependent exciton mobility in single-walled carbon nanotubes studied by single-molecule reactions. Nano Lett. 10, 1595–1599 (2010).

    Article  CAS  Google Scholar 

  20. Moritsubo, S. et al. Exciton diffusion in air-suspended single-walled carbon nanotubes. Phys. Rev. Lett. 104, 247402 (2010).

    Article  CAS  Google Scholar 

  21. Hertel, T., Himmelein, S., Ackermann, T., Stich, D. & Crochet, J. Diffusion limited photoluminescence quantum yields in 1-D semiconductors: single-wall carbon nanotubes. ACS Nano 4, 7161–7168 (2010).

    Article  CAS  Google Scholar 

  22. Yoshikawa, K., Matsuda, K. & Kanemitsu, Y. Exciton transport in suspended single carbon nanotubes studied by photoluminescence imaging spectroscopy. J. Phys. Chem. C 114, 4353–4356 (2010).

    Article  CAS  Google Scholar 

  23. Matsunaga, R., Matsuda, K. & Kanemitsu, Y. Observation of charged excitons in hole-doped carbon nanotubes using photoluminescence and absorption spectroscopy. Phys. Rev. Lett. 106, 037404 (2011).

    Article  Google Scholar 

  24. Santos, S. M. et al. All-optical trion generation in single-walled carbon nanotubes. Phys. Rev. Lett. 107, 187401 (2011).

    Article  Google Scholar 

  25. Steiner, M. et al. How does the substrate affect the Raman and excited state spectra of a carbon nanotube? Appl. Phys. A 96, 271–282 (2009).

    Article  CAS  Google Scholar 

  26. Hohng, S. & Ha, T. Near-complete suppression of quantum dot blinking in ambient conditions. J. Am. Chem. Soc. 126, 1324–1325 (2004).

    Article  CAS  Google Scholar 

  27. Htoon, H., O'Connell, M. J., Cox, P. J., Doorn, S. K. & Klimov, V. I. Low temperature emission spectra of individual single-walled carbon nanotubes: multiplicity of subspecies within single-species nanotube ensembles. Phys. Rev. Lett. 93, 027401 (2004).

    Article  CAS  Google Scholar 

  28. Lefebvre, J., Austing, D. G., Bond, J. & Finnie, P. Photoluminescence imaging of suspended single-walled carbon nanotubes. Nano Lett. 6, 1603–1608 (2006).

    Article  CAS  Google Scholar 

  29. Sapmaz, S., Meyer, C., Beliczynski, P., Jarillo-Herrero, P. & Kouwenhoven, L. P. Excited state spectroscopy in carbon nanotube double quantum dots. Nano Lett. 6, 1350–1355 (2006).

    Article  CAS  Google Scholar 

  30. Verberk, R., van Oijen, A. M. & Orrit, M. Simple model for the power-law blinking of single semiconductor nanocrystals. Phys. Rev. B 66, 233202 (2002).

    Article  Google Scholar 

  31. Perebeinos, V. & Avouris, P. Phonon and electronic nonradiative decay mechanisms of excitons in carbon nanotubes. Phys. Rev. Lett. 101, 057401 (2008).

    Article  Google Scholar 

  32. Wang, F., Dukovic, G., Knoesel, E., Brus, L. E. & Heinz, T. F. Observation of rapid Auger recombination in optically excited semiconducting carbon nanotubes. Phys. Rev. B 70, 241403 (2004).

    Article  Google Scholar 

  33. Wang, F., Wu, Y., Hybertsen, M. S. & Heinz, T. F. Auger recombination of excitons in one-dimensional systems. Phys. Rev. B 73, 245424 (2006).

    Article  Google Scholar 

  34. Kuno, M., Fromm, D., Hamann, H., Gallagher, A. & Nesbitt, D. On/off fluorescence intermittency of single semiconductor quantum dots. J. Phys. Chem. 115, 1028–1040 (2001).

    Article  CAS  Google Scholar 

  35. Akola, J. & Häkkinen, H. Density functional study of gold atoms and clusters on a graphite (0001) surface with defects. Phys. Rev. B 74, 165404 (2006).

    Article  Google Scholar 

  36. Wang, Z., Zdrojek, M., Mélin, T. & Devel, M. Electric charge enhancements in carbon nanotubes: theory and experiments. Phys. Rev. B 78, 085425 (2008).

    Article  Google Scholar 

  37. Nikolaev, P. et al. Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem. Phys. Lett. 313, 91–97 (1999).

    Article  CAS  Google Scholar 

  38. Duque, J. G. et al. Diameter-dependent solubility of single-walled carbon nanotubes. ACS Nano 4, 3063–3072 (2010).

    Article  CAS  Google Scholar 

  39. Ghosh, S., Bachilo, S. M. & Weisman, R. B. Advanced sorting of single-walled carbon nanotubes by nonlinear density-gradient ultracentrifugation. Nature Nanotech. 5, 443–450 (2010).

    Article  CAS  Google Scholar 

  40. Zhang, B., Zerubia, J. & Olivo-Marin, J-C. Gaussian approximations of fluorescence microscope point-spread function models. Appl. Opt. 46, 1819–1829 (2007).

    Article  Google Scholar 

  41. Berciaud, S., Cognet, L. & Lounis, B. Luminescence decay and the absorption cross section of individual single-walled carbon nanotubes. Phys. Rev. Lett. 101, 077402 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge J.J. Han for technical support with the imaging experiment, J.D. Sau for stimulating theoretical discussions, and N.H. Mack for electron microscopy support. This work was performed at the Center for Integrated Nanotechnologies, a US Department of Energy, Office of Basic Energy Sciences user facility. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the US Department of Energy (contract no. DE-AC52-06NA25396).

Author information

Authors and Affiliations

Authors

Contributions

J.J.C. designed the experiment, performed optical measurements, prepared samples, and analysed and modelled the data. J.G.D. provided technical assistance with sample preparation. J.H.W. and S.K.D. supervised the project. All authors contributed to the preparation of the manuscript.

Corresponding author

Correspondence to Stephen K. Doorn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 713 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crochet, J., Duque, J., Werner, J. et al. Photoluminescence imaging of electronic-impurity-induced exciton quenching in single-walled carbon nanotubes. Nature Nanotech 7, 126–132 (2012). https://doi.org/10.1038/nnano.2011.227

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.227

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing