Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Protein design

Engineering di-iron enzymes

A dramatic switch of reactivity — from hydroquinone oxidation to N-hydroxylation — can be achieved through the rational engineering of a de novo-designed di-iron protein. Four specific amino-acid mutations spread throughout the first, second and third coordination shells result in a million-fold increase in the relative rate of these two reactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A switch in activity from arylamine oxidase to arylamine hydroxylase was achieved by rationally mutating the DFsc protein (left, PDB ID: 2HZ8; ref. 9) to mimic the active site of the native AurF protein (right, PDB ID: 2JCD; ref. 6).

References

  1. Nanda, V. & Koder, R. L. Nature Chem. 2, 15–24 (2010).

    Article  CAS  Google Scholar 

  2. Lu, Y., Yeung, N., Sieracki, N. & Marshall, N. M. Nature 460, 855–862 (2009).

    Article  CAS  Google Scholar 

  3. Reig, A. J. et al. Nature Chem. 4, 900–906 (2012).10.1038/nchem.1454

    Article  CAS  Google Scholar 

  4. Sazinsky, M. H. & Lippard, S. J. Acc. Chem. Res. 39, 558–566 (2006).

    Article  CAS  Google Scholar 

  5. Kurtz, D. M. Jr J. Biol. Inorg. Chem. 2, 159–167 (1997).

    Article  CAS  Google Scholar 

  6. Zocher, G., Winkler, R., Hertweck, C. & Schulz, G. E. J. Mol. Biol. 373, 65–74 (2007).

    Article  CAS  Google Scholar 

  7. Calhoun, J. R. et al. J. Mol. Biol. 334, 1101–1115 (2003).

    Article  CAS  Google Scholar 

  8. Lombardi, A. et al. Proc. Natl Acad. Sci. USA 97, 6298–6305 (2000).

    Article  CAS  Google Scholar 

  9. Calhoun, J. R. et al. Structure 16, 210–215 (2008).

    Article  CAS  Google Scholar 

  10. Guy, J. E. et al. Proc. Natl Acad. Sci. USA 103, 17220–17224 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven M. Berry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berry, S. Engineering di-iron enzymes. Nature Chem 4, 868–869 (2012). https://doi.org/10.1038/nchem.1483

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1483

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing