Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Oncogenes, Fusion Genes and Tumor Suppressor Genes

Critical role of retinoid/rexinoid signaling in mediating transformation and therapeutic response of NUP98-RARG leukemia

Abstract

While the nucleoporin 98-retinoic acid receptor gamma (NUP98-RARG) is the first RARG fusion protein found in acute leukemia, its roles and the molecular basis in oncogenic transformation are currently unknown. Here, we showed that homodimeric NUP98-RARG not only acquired unique nuclear localization pattern and ability of recruiting both RXRA and wild-type NUP98, but also exhibited similar transcriptional properties as RARA fusions found in acute promyelocytic leukemia (APL). Using murine bone marrow retroviral transduction/transformation assay, we further demonstrated that NUP98-RARG fusion protein had gained transformation ability of primary hematopoietic stem/progenitor cells, which was critically dependent on the C-terminal GLFG domain of NUP98 and the DNA binding domain (DBD) of RARG. In contrast to other NUP98 fusions, cells transformed by the NUP98-RARG fusion were extremely sensitive to all-trans retinoic acid (ATRA) treatment. Interestingly, while pan-RXR agonists, SR11237 and LGD1069 could specifically inhibit NUP98-RARG transformed cells, mutation of the RXR interaction domain in NUP98-RARG had little effect on its transformation, revealing that therapeutic functions of rexinoid can be independent of the direct biochemical interaction between RXR and the fusion. Together, these results indicate that deregulation of the retinoid/rexinoid signaling pathway has a major role and may represent a potential therapeutic target for NUP98-RARG-mediated transformation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Cheung N, So CW . Transcriptional and epigenetic networks in haematological malignancy. FEBS Lett 2011; 585: 2100–2111.

    Article  CAS  PubMed  Google Scholar 

  2. Such E, Cervera J, Valencia A, Barragan E, Ibanez M, Luna I et al. A novel NUP98/RARG gene fusion in acute myeloid leukemia resembling acute promyelocytic leukemia. Blood 2011; 117: 242–245.

    Article  CAS  PubMed  Google Scholar 

  3. Qiu JJ, Lu X, Zeisig BB, Ma Z, Cai X, Chen S et al. Leukemic transformation by the APL fusion protein PRKAR1A-RAR{alpha} critically depends on recruitment of RXR{alpha}. Blood 2010; 115: 643–652.

    Article  CAS  PubMed  Google Scholar 

  4. de The H, Chen Z . Acute promyelocytic leukaemia: novel insights into the mechanisms of cure. Nat Rev Cancer 2010; 10: 775–783.

    Article  CAS  PubMed  Google Scholar 

  5. Hollink IH, van den Heuvel-Eibrink MM, Arentsen-Peters ST, Pratcorona M, Abbas S, Kuipers JE et al. NUP98/NSD1 characterizes a novel poor prognostic group in acute myeloid leukemia with a distinct HOX gene expression pattern. Blood 2011; 118: 3645–3656.

    Article  CAS  PubMed  Google Scholar 

  6. Borrow J, Shearman AM, Stanton VP Jr ., Becher R, Collins T, Williams AJ et al. The t(7;11)(p15;p15) translocation in acute myeloid leukaemia fuses the genes for nucleoporin NUP98 and class I homeoprotein HOXA9. Nat Genet 1996; 12: 159–167.

    Article  CAS  PubMed  Google Scholar 

  7. Nakamura T, Largaespada DA, Lee MP, Johnson LA, Ohyashiki K, Toyama K et al. Fusion of the nucleoporin gene NUP98 to HOXA9 by the chromosome translocation t(7;11)(p15;p15) in human myeloid leukaemia. Nat Genet 1996; 12: 154–158.

    Article  CAS  PubMed  Google Scholar 

  8. Gough SM, Slape CI, Aplan PD . NUP98 gene fusions and hematopoietic malignancies: common themes and new biologic insights. Blood 2011; 118: 6247–6257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kasper LH, Brindle PK, Schnabel CA, Pritchard CE, Cleary ML, van Deursen JM et al. CREB binding protein interacts with nucleoporin-specific FG repeats that activate transcription and mediate NUP98-HOXA9 oncogenicity. Mol Cell Biol 1999; 19: 764–776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chambon P . The molecular and genetic dissection of the retinoid signaling pathway. Recent Prog Horm Res 1995; 50: 317–332.

    CAS  PubMed  Google Scholar 

  11. Chambon P . A decade of molecular biology of retinoic acid receptors. FASEB J 1996; 10: 940–954.

    Article  CAS  PubMed  Google Scholar 

  12. Qiu JJ, Chu H, Lu X, Jiang X, Dong S . The reduced and altered activities of PAX5 are linked to the protein-protein interaction motif (coiled-coil domain) of the PAX5-PML fusion protein in t(9;15)-associated acute lymphocytic leukemia. Oncogene 2011; 30: 967–977.

    Article  CAS  PubMed  Google Scholar 

  13. Wang GG, Song J, Wang Z, Dormann HL, Casadio F, Li H et al. Haematopoietic malignancies caused by dysregulation of a chromatin-binding PHD finger. Nature 2009; 459: 847–851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kwok C, Zeisig BB, Dong S, So CW . Forced homo-oligomerization of RARalpha leads to transformation of primary hematopoietic cells. Cancer Cell 2006; 9: 95–108.

    Article  CAS  PubMed  Google Scholar 

  15. Cheung N, Chan LC, Thompson A, Cleary ML, So CW . Protein arginine-methyltransferase-dependent oncogenesis. Nat Cell Biol 2007; 9: 1208–1215.

    Article  CAS  PubMed  Google Scholar 

  16. Zeisig BB, Kwok C, Zelent A, Shankaranarayanan P, Gronemeyer H, Dong S et al. Recruitment of RXR by homotetrameric RARalpha fusion proteins is essential for transformation. Cancer Cell 2007; 12: 36–51.

    Article  CAS  PubMed  Google Scholar 

  17. Qiu J, Huang Y, Chen G, Chen Z, Tweardy DJ, Dong S et al. Aberrant chromatin remodeling by retinoic acid receptor alpha fusion proteins assessed at the single-cell level. Mol Biol Cell 2007; 18: 3941–3951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. de Lera AR, Bourguet W, Altucci L, Gronemeyer H . Design of selective nuclear receptor modulators: RAR and RXR as a case study. Nat Rev Drug Discov 2007; 6: 811–820.

    Article  CAS  PubMed  Google Scholar 

  19. Arteaga MF, Mikesch JH, Qiu JH, Christensen J, Helin K, Kogan SC et al. The histone demethylase PHF8 governs retinoic acid response in acute promyelocyctic leukemia. Cancer Cell 2013; 23: 376–389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. So CW, Cleary ML . Common mechanism for oncogenic activation of MLL by forkhead family proteins. Blood 2003; 101: 633–639.

    Article  CAS  PubMed  Google Scholar 

  21. So CW, Cleary ML . MLL-AFX requires the transcriptional effector domains of AFX to transform myeloid progenitors and transdominantly interfere with forkhead protein function. Mol Cell Biol 2002; 22: 6542–6552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dong S, Tweardy DJ . Interactions of STAT5b-RARalpha, a novel acute promyelocytic leukemia fusion protein, with retinoic acid receptor and STAT3 signaling pathways. Blood 2002; 99: 2637–2646.

    Article  CAS  PubMed  Google Scholar 

  23. Oka M, Asally M, Yasuda Y, Ogawa Y, Tachibana T, Yoneda Y et al. The mobile FG nucleoporin Nup98 is a cofactor for Crm1-dependent protein export. Mol Biol Cell 2010; 21: 1885–1896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhu J, Nasr R, Peres L, Riaucoux-Lormiere F, Honore N, Berthier C et al. RXR Is an Essential Component of the Oncogenic PML/RARA Complex In Vivo. Cancer Cell 2007; 12: 23–35.

    Article  CAS  PubMed  Google Scholar 

  25. Kwok C, Zeisig BB, Qiu J, Dong S, So CW . Transforming activity of AML1-ETO is independent of CBFbeta and ETO interaction but requires formation of homo-oligomeric complexes. Proc Natl Acad Sci USA 2009; 106: 2853–2858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. So CW, Cleary ML . Dimerization: a versatile switch for oncogenesis. Blood 2004; 104: 919–922.

    Article  CAS  PubMed  Google Scholar 

  27. Du C, Redner RL, Cooke MP, Lavau C . Overexpression of wild-type retinoic acid receptor alpha (RARalpha) recapitulates retinoic acid-sensitive transformation of primary myeloid progenitors by acute promyelocytic leukemia RARalpha-fusion genes. Blood 1999; 94: 793–802.

    CAS  PubMed  Google Scholar 

  28. Sternsdorf T, Phan VT, Maunakea ML, Ocampo CB, Sohal J, Silletto A et al. Forced retinoic acid receptor alpha homodimers prime mice for APL-like leukemia. Cancer Cell 2006; 9: 81–94.

    Article  CAS  PubMed  Google Scholar 

  29. Pitha-Rowe I, Petty WJ, Kitareewan S, Dmitrovsky E . Retinoid target genes in acute promyelocytic leukemia. Leukemia 2003; 17: 1723–1730.

    Article  CAS  PubMed  Google Scholar 

  30. Zeisig BB, So CW . Retroviral/Lentiviral transduction and transformation assay. Methods Mol Biol 2009; 538: 207–229.

    Article  CAS  PubMed  Google Scholar 

  31. Zhou J, Peres L, Honore N, Nasr R, Zhu J, de The H et al. Dimerization-induced corepressor binding and relaxed DNA-binding specificity are critical for PML/RARA-induced immortalization. Proc Natl Acad Sci USA 2006; 103: 9238–9243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. So CW, Lin M, Ayton PM, Chen EH, Cleary ML . Dimerization contributes to oncogenic activation of MLL chimeras in acute leukemias. Cancer Cell 2003; 4: 99–110.

    Article  CAS  PubMed  Google Scholar 

  33. Martin ME, Milne TA, Bloyer S, Galoian K, Shen W, Gibbs D et al. Dimerization of MLL fusion proteins immortalizes hematopoietic cells. Cancer Cell 2003; 4: 197–207.

    Article  CAS  PubMed  Google Scholar 

  34. Liu Y, Cheney MD, Gaudet JJ, Chruszcz M, Lukasik SM, Sugiyama D et al. The tetramer structure of the Nervy homology two domain, NHR2, is critical for AML1/ETO's activity. Cancer Cell 2006; 9: 249–260.

    Article  PubMed  Google Scholar 

  35. Such E, Cordon L, Sempere A, Villamon E, Ibanez M, Luna I et al. In vitro all-trans retinoic acid sensitivity of acute myeloid leukemia blasts with NUP98/RARG fusion gene. Ann Hematol 2014; 93: 1931–1933.

    Article  PubMed  Google Scholar 

  36. Altucci L, Leibowitz MD, Ogilvie KM, de Lera AR, Gronemeyer H . RAR and RXR modulation in cancer and metabolic disease. Nat Rev Drug Discov 2007; 6: 793–810.

    Article  CAS  PubMed  Google Scholar 

  37. Fung TK, So CW . Overcoming treatment resistance in acute promyelocytic leukemia and beyond. Oncotarget 2013; 4: 1128–1129.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Schenk T, Chen WC, Gollner S, Howell L, Jin L, Hebestreit K et al. Inhibition of the LSD1 (KDM1A) demethylase reactivates the all-trans-retinoic acid differentiation pathway in acute myeloid leukemia. Nat Med 2012; 18: 605–611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Huang S, Laoukili J, Epping MT, Koster J, Holzel M, Westerman BA et al. ZNF423 is critically required for retinoic acid-induced differentiation and is a marker of neuroblastoma outcome. Cancer Cell 2009; 15: 328–340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Epping MT, Wang L, Edel MJ, Carlee L, Hernandez M, Bernards R et al. The human tumor antigen PRAME is a dominant repressor of retinoic acid receptor signaling. Cell 2005; 122: 835–847.

    Article  CAS  PubMed  Google Scholar 

  41. Marinelli A, Bossi D, Pelicci PG, Minucci S . A redundant oncogenic potential of the retinoic receptor (RAR) alpha, beta and gamma isoforms in acute promyelocytic leukemia. Leukemia 2007; 21: 647–650.

    Article  CAS  PubMed  Google Scholar 

  42. Shankaranarayanan P, Rossin A, Khanwalkar H, Alvarez S, Alvarez R, Jacobson A et al. Growth factor-antagonized rexinoid apoptosis involves permissive PPARgamma/RXR heterodimers to activate the intrinsic death pathway by NO. Cancer Cell 2009; 16: 220–231.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Mr B Cao from Beijing Friendship Hospital Capital Medical University, Drs X Wang, L Sun, X Sun from Baylor College of Medicine and Mr SH Tung from King’s College London for their helpful discussion and inputs. We thank Dr X Xu (Department of Clinical Cancer Prevention, The University of Texas M D Anderson Cancer Center, Houston) for the RARG construct, Dr CD Allis (Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York) for NUP98-PHF23 and NUP98-JARID1A expression vectors, Dr AS Belmont (University of Illinois, Urbana) for the A03_1 cell line. This work was supported in part, by funds from the Albert and Margaret Alkek Foundation (SD), Leukemia Research Foundation (LRF) (SD), Ladies Leukemia League (LLL) (SD), the Cancer Prevention and Research Institute of Texas (CPRIT, RP110050; SD, YS and RP100421; JJQ, SD), Leukaemia and Lymphoma Research (LLR) (CWES), Cancer Research UK (CRUK) (CWES), and the Kay Kendall Leukaemia Fund (KKLF) (CWES).

Author Contributions

JJQ and BBZ designed and performed research and wrote the manuscript; SL performed research and wrote the manuscript; HC performed research; WL and YS analyzed data; AG, JS and HG contributed reagents, analyzed data and edited the paper; and SD and CWES designed research and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J J Qiu, S Dong or C W E So.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, J., Zeisig, B., Li, S. et al. Critical role of retinoid/rexinoid signaling in mediating transformation and therapeutic response of NUP98-RARG leukemia. Leukemia 29, 1153–1162 (2015). https://doi.org/10.1038/leu.2014.334

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2014.334

This article is cited by

Search

Quick links