Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

ARMC5 mutation analysis in patients with primary aldosteronism and bilateral adrenal lesions

Abstract

Idiopathic hyperaldosteronism (IHA) due to bilateral adrenal hyperplasia is the most common subtype of primary aldosteronism (PA). The pathogenesis of IHA is still unknown, but the bilateral disease suggests a potential predisposing genetic alteration. Heterozygous germline mutations of armadillo repeat containing 5 (ARMC5) have been shown to be associated with hypercortisolism due to sporadic primary bilateral macronodular adrenal hyperplasia and are also observed in African-American PA patients. We investigated the presence of germline ARMC5 mutations in a group of PA patients who had bilateral computed tomography-detectable adrenal alterations. We sequenced the entire coding region of ARMC5 and all intron/exon boundaries in 39 patients (37 Caucasians and 2 black Africans) with confirmed PA (8 unilateral, 27 bilateral and 4 undetermined subtype) and bilateral adrenal lesions. We identified 11 common variants, 5 rare variants with a minor allele frequency <1% and 2 new variants not previously reported in public databases. We did not detect by in silico analysis any ARMC5 sequence variations that were predicted to alter protein function. In conclusion, ARMC5 mutations are not present in a fairly large series of Caucasian patients with PA associated to bilateral adrenal disease. Further studies are required to definitively clarify the role of ARMC5 in the pathogenesis of adrenal nodules and aldosterone excess in patients with PA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mulatero P, Stowasser M, Loh KC, Fardella CE, Gordon RD, Mosso L et al. Increased diagnosis of primary aldosteronism, including surgically correctable forms, in centers from five continents. J Clin Endocrinol Metab 2004; 89: 1045–1050.

    Article  CAS  Google Scholar 

  2. Funder JW, Carey RM, Fardella C, Gomez-Sanchez CE, Mantero F, Stowasser M et al. Case detection, diagnosis, and treatment of patients with primary aldosteronism: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 2008; 93: 3266–3281.

    Article  CAS  Google Scholar 

  3. Monticone S, Viola A, Rossato D, Veglio F, Reincke M, Gomez-Sanchez C et al. Adrenal vein sampling in primary aldosteronism: towards a standardised protocol. Lancet Diabetes Endocrinol 2015; 3: 296–303.

    Article  CAS  Google Scholar 

  4. Choi M, Scholl UI, Yue P, Björklund P, Zhao B, Nelson-Williams C et al. K+ channel mutations in adrenal aldosterone-producing adenomas and hereditary hypertension. Science 2011; 331: 768–772.

    Article  CAS  Google Scholar 

  5. Beuschlein F, Boulkroun S, Osswald A, Wieland T, Nielsen HN, Lichtenauer UD et al. Somatic mutations in ATP1A1 and ATP2B3 lead to aldosterone-producing adenomas and secondary hypertension. Nat Genet 2013; 45: 440–444 444e1-2.

    Article  CAS  Google Scholar 

  6. Scholl UI, Goh G, Stölting G, de Oliveira RC, Choi M, Overton JD et al. Somatic and germline CACNA1D calcium channel mutations in aldosterone-producing adenomas and primary aldosteronism. Nat Genet 2013; 45: 1050–1054.

    Article  CAS  Google Scholar 

  7. Azizan EA, Poulsen H, Tuluc P, Zhou J, Clausen MV, Lieb A et al. Somatic mutations in ATP1A1 and CACNA1D underlie a common subtype of adrenal hypertension. Nat Genet 2013; 45: 1055–1060.

    Article  CAS  Google Scholar 

  8. Monticone S, Else T, Mulatero P, Williams TA, Rainey WE . Understanding primary aldosteronism: impact of next generation sequencing and expression profiling. Mol Cell Endocrinol 2015; 399: 311–320.

    Article  CAS  Google Scholar 

  9. Mulatero P, Monticone S, Rainey WE, Veglio F, Williams TA . Role of KCNJ5 in familial and sporadic primary aldosteronism. Nat Rev Endocrinol 2013; 9: 104–112.

    Article  CAS  Google Scholar 

  10. Sukor N, Mulatero P, Gordon RD, So A, Duffy D, Bertello C et al. Further evidence for linkage of familial hyperaldosteronism type II at chromosome 7p22 in Italian as well as Australian and South American families. J Hypertens 2008; 26: 1577–1582.

    Article  CAS  Google Scholar 

  11. Scholl UI, Stölting G, Nelson-Williams C, Vichot AA, Choi M, Loring E et al. Recurrent gain of function mutation in calcium channel CACNA1H causes early-onset hypertension with primary aldosteronism. Elife 2015; 4: e06315.

    Article  Google Scholar 

  12. Assié G, Libé R, Espiard S, Rizk-Rabin M, Guimier A, Luscap W et al. ARMC5 mutations in macronodular adrenal hyperplasia with Cushing's syndrome. N Engl J Med 2013; 369: 2105–2114.

    Article  Google Scholar 

  13. Faucz FR, Zilbermint M, Lodish MB, Szarek E, Trivellin G, Sinaii N et al. Macronodular adrenal hyperplasia due to mutations in an armadillo repeat containing 5 (ARMC5) gene: a clinical and genetic investigation. J Clin Endocrinol Metab 2014; 99: E1113–E1119.

    Article  CAS  Google Scholar 

  14. Zilbermint M, Xekouki P, Faucz FR, Berthon A, Gkourogianni A, Helene Schernthaner-Reiter M et al. Primary aldosteronism and ARMC5 variants. J Clin Endocrinol Metab 2015; 100: E900–E909.

    Article  CAS  Google Scholar 

  15. Williams TA, Monticone S, Schack VR, Stindl J, Burrello J, Buffolo F et al. Somatic ATP1A1, ATP2B3, and KCNJ5 mutations in aldosterone-producing adenomas. Hypertension 2014; 63: 188–195.

    Article  CAS  Google Scholar 

  16. Fallo F, Bertello C, Tizzani D, Fassina A, Boulkroun S, Sonino N et al. Concurrent primary aldosteronism and subclinical cortisol hypersecretion: a prospective study. J Hypertens 2011; 29: 1773–1777.

    Article  CAS  Google Scholar 

  17. Fernandes-Rosa FL, Williams TA, Riester A, Steichen O, Beuschlein F, Boulkroun S et al. Genetic spectrum and clinical correlates of somatic mutations in aldosterone-producing adenoma. Hypertension 2014; 64: 354–361.

    Article  CAS  Google Scholar 

  18. den Dunnen JT, Antonarakis SE . Mutation nomenclature extensions and suggestions to describe complex mutations: a discussion. Hum Mutat 2000; 15: 7–12.

    Article  CAS  Google Scholar 

  19. Mulatero P, Tizzani D, Viola A, Bertello C, Monticone S, Mengozzi G et al. Prevalence and characteristics of familial hyperaldosteronism: the PATOGEN study (Primary Aldosteronism in TOrino-GENetic forms). Hypertension 2011; 58: 797–803.

    Article  CAS  Google Scholar 

  20. National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation and Treatment of High Blood Cholesterol in Adults. Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 2001; 285: 2486–2497.

    Article  Google Scholar 

  21. Monticone S, Hattangady NG, Nishimoto K, Mantero F, Rubin B, Cicala MV et al. Effect of KCNJ5 mutations on gene expression in aldosterone-producing adenomas and adrenocortical cells. J Clin Endocrinol Metab 2012; 97: E1567–E1572.

    Article  CAS  Google Scholar 

  22. Oki K, Plonczynski MW, Lam ML, Gomez-Sanchez EP, Gomez-Sanchez CE . Potassium channel mutant KCNJ5 T158A expression in HAC-15 cells increases aldosterone synthesis. Endocrinology 2012; 153: 1774–1782.

    Article  CAS  Google Scholar 

  23. Gomez-Sanchez CE . Channels and pumps in aldosterone-producing adenomas. J Clin Endocrinol Metab 2014; 99: 1152–1156.

    Article  CAS  Google Scholar 

  24. Gomez-Sanchez CE, Kuppusamy M, Gomez-Sanchez EP . Somatic mutations of the ATP1A1 gene and aldosterone-producing adenomas. Mol Cell Endocrinol 2015; 408: 213–219.

    Article  CAS  Google Scholar 

  25. Williams TA, Monticone S, Morello F, Liew CC, Mengozzi G, Pilon C et al. Teratocarcinoma-derived growth factor-1 is upregulated in aldosterone-producing adenomas and increases aldosterone secretion and inhibits apoptosis in vitro. Hypertension 2010; 55: 1468–1475.

    Article  CAS  Google Scholar 

  26. Connell JM, Fraser R, MacKenzie SM, Friel EC, Ingram MC, Holloway CD et al. The impact of polymorphisms in the gene encoding aldosterone synthase (CYP11B2) on steroid synthesis and blood pressure regulation. Mol Cell Endocrinol 2004; 217: 243–247.

    Article  CAS  Google Scholar 

  27. Mulatero P, Schiavone D, Fallo F, Rabbia F, Pilon C, Chiandussi L et al. CYP11B2 gene polymorphisms in idiopathic hyperaldosteronism. Hypertension 2000; 35: 694–698.

    Article  CAS  Google Scholar 

  28. McManus F, Sands W, Diver L, MacKenzie SM, Fraser R, Davies E et al. APEX1 regulation of aldosterone synthase gene transcription is disrupted by a common polymorphism in humans. Circ Res 2012; 111: 212–219.

    Article  CAS  Google Scholar 

  29. Tewari R, Bailes E, Bunting KA, Coates JC . Armadillo-repeat protein functions: questions for little creatures. Trends Cell Biol 2010; 20: 470–481.

    Article  CAS  Google Scholar 

  30. Berthon A, Drelon C, Ragazzon B, Boulkroun S, Tissier F, Amar L et al. WNT/β-catenin signalling is activated in aldosterone-producing adenomas and controls aldosterone production. Hum Mol Genet 2014; 23: 889–905.

    Article  CAS  Google Scholar 

  31. Fallo F, Veglio F, Bertello C, Sonino N, Della Mea P, Ermani M et al. Prevalence and characteristics of the metabolic syndrome in primary aldosteronism. J Clin Endocrinol Metab 2006; 91: 454–459.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

PM is in receipt of a grant from the Italian Ministry of Instruction, University and Research (Grant ex-60%, 2013) and SM is in receipt of a grant from the Italian Ministry of Instruction, University and Research (Grant ex-60%, 2014). We thank Dr Elisa Taschin and Dr Maria Virginia Lanza (Veneto Institute of Oncology) for technical support in sequencing ARMC5 gene.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Mulatero.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Journal of Human Hypertension website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mulatero, P., Schiavi, F., Williams, T. et al. ARMC5 mutation analysis in patients with primary aldosteronism and bilateral adrenal lesions. J Hum Hypertens 30, 374–378 (2016). https://doi.org/10.1038/jhh.2015.98

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jhh.2015.98

This article is cited by

Search

Quick links