Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Obesity-induced changes in lipid mediators persist after weight loss

Abstract

Background:

Obesity induces significant changes in lipid mediators, however, the extent to which these changes persist after weight loss has not been investigated.

Subjects/Methods:

We fed C57BL6 mice a high-fat diet to generate obesity and then switched the diet to a lower-fat diet to induce weight loss. We performed a comprehensive metabolic profiling of lipid mediators including oxylipins, endocannabinoids, sphingosines and ceramides in key metabolic tissues (including adipose, liver, muscle and hypothalamus) and plasma.

Results:

We found that changes induced by obesity were largely reversible in most metabolic tissues but the adipose tissue retained a persistent obese metabolic signature. Prostaglandin signaling was perturbed in the obese state and lasting increases in PGD2, and downstream metabolites 15-deoxy PGJ2 and delta-12-PGJ2 were observed after weight loss. Furthermore expression of the enzyme responsible for PGD2 synthesis (hematopoietic prostaglandin D synthase, HPGDS) was increased in obese adipose tissues and remained high after weight loss. We found that inhibition of HPGDS over the course of 5 days resulted in decreased food intake in mice. Increased HPGDS expression was also observed in human adipose tissues obtained from obese compared with lean individuals. We then measured circulating levels of PGD2 in obese patients before and after weight loss and found that while elevated relative to lean subjects, levels of this metabolite did not decrease after significant weight loss.

Conclusions:

These results suggest that lasting changes in lipid mediators induced by obesity, still present after weight loss, may play a role in the biological drive to regain weight.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. BMC. Nutrition & Weight Management 2015. Available at: https://http://www.bmc.org/nutritionweight/services/weightmanagement.htm.

  2. Anderson JW, Konz EC, Frederich RC, Wood CL . Long-term weight-loss maintenance: a meta-analysis of US studies. Am J Clin Nutr 2001; 74: 579–584.

    CAS  PubMed  Google Scholar 

  3. Fildes A, Charlton J, Rudisill C, Littlejohns P, Prevost AT, Gulliford MC . Probability of an obese person attaining normal body weight: cohort study using electronic health records. Am J Public Health 2015; 105: e54–e59.

    PubMed  PubMed Central  Google Scholar 

  4. Lacroix MC, Caillol M, Durieux D, Monnerie R, Grebert D, Pellerin L et al. Long-lasting metabolic imbalance related to obesity alters olfactory tissue homeostasis and impairs olfactory-driven behaviors. Chem Senses 2015; 40: 537–556.

    CAS  PubMed  Google Scholar 

  5. Pasman WJ, Saris WH, Westerterp-Plantenga MS . Predictors of weight maintenance. Obes Res 1999; 7: 43–50.

    CAS  PubMed  Google Scholar 

  6. Stunkard A, Mc L-HM . The results of treatment for obesity: a review of the literature and report of a series. AMA Arch Intern Med 1959; 103: 79–85.

    CAS  PubMed  Google Scholar 

  7. Vogels N, Diepvens K, Westerterp-Plantenga MS . Predictors of long-term weight maintenance. Obes Res 2005; 13: 2162–2168.

    PubMed  Google Scholar 

  8. Westerterp-Plantenga MS, Kempen KP, Saris WH . Determinants of weight maintenance in women after diet-induced weight reduction. Int J Obes Relat Metab Disord 1998; 22: 1–6.

    CAS  PubMed  Google Scholar 

  9. Wing RR, Phelan S . Long-term weight loss maintenance. Am J Clin Nutr 2005; 82 (1 Suppl): 222S–225SS.

    CAS  Google Scholar 

  10. Wadden TA, Berkowitz RI, Womble LG, Sarwer DB, Phelan S, Cato RK et al. Randomized trial of lifestyle modification and pharmacotherapy for obesity. N Engl J Med 2005; 353: 2111–2120.

    CAS  PubMed  Google Scholar 

  11. NIH Technology Assessment Conference Panel. Methods for voluntary weight loss and control. NIH Technology Assessment Conference Panel. Ann Intern Med 1992; 116: 942–949.

    Google Scholar 

  12. Diabetes Prevention Program Research G Diabetes Prevention Program Research G Knowler WC Diabetes Prevention Program Research G Fowler SE Diabetes Prevention Program Research G Hamman RF Diabetes Prevention Program Research G Christophi CA Diabetes Prevention Program Research G Hoffman HJ et al. 10-year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study. Lancet 2009; 374: 1677–1686.

    Google Scholar 

  13. Look ARG, Wing RR . Long-term effects of a lifestyle intervention on weight and cardiovascular risk factors in individuals with type 2 diabetes mellitus: four-year results of the Look AHEAD trial. Arch Intern Med 2010; 170: 1566–1575.

    Google Scholar 

  14. Tsai AG, Wadden TA . Systematic review: an evaluation of major commercial weight loss programs in the United States. Ann Intern Med 2005; 142: 56–66.

    PubMed  Google Scholar 

  15. Reilly S . The role of the gustatory thalamus in taste-guided behavior. Neurosci Biobehav Rev 1998; 22: 883–901.

    CAS  PubMed  Google Scholar 

  16. Saper CB, Chou TC, Elmquist JK . The need to feed: homeostatic and hedonic control of eating. Neuron 2002; 36: 199–211.

    CAS  PubMed  Google Scholar 

  17. Fothergill E, Guo J, Howard L, Kerns JC, Knuth ND, Brychta R et al. Persistent metabolic adaptation 6 years after 'The Biggest Loser' competition. Obesity 2016; 24: 1612–1619.

    PubMed  Google Scholar 

  18. Leibel RL, Rosenbaum M, Hirsch J . Changes in energy expenditure resulting from altered body weight. N Engl J Med 1995; 332: 621–628.

    CAS  PubMed  Google Scholar 

  19. MacLean PS, Higgins JA, Jackman MR, Johnson GC, Fleming-Elder BK, Wyatt HR et al. Peripheral metabolic responses to prolonged weight reduction that promote rapid, efficient regain in obesity-prone rats. Am J Physiol Regul Integr Comp Physiol 2006; 290: R1577–R1588.

    CAS  PubMed  Google Scholar 

  20. MacLean PS, Higgins JA, Johnson GC, Fleming-Elder BK, Donahoo WT, Melanson EL et al. Enhanced metabolic efficiency contributes to weight regain after weight loss in obesity-prone rats. Am J Physiol Regul Integr Comp Physiol 2004; 287: R1306–R1315.

    CAS  PubMed  Google Scholar 

  21. Wadden TA, Foster GD, Letizia KA, Mullen JL . Long-term effects of dieting on resting metabolic rate in obese outpatients. JAMA 1990; 264: 707–711.

    CAS  PubMed  Google Scholar 

  22. Sumithran P, Prendergast LA, Delbridge E, Purcell K, Shulkes A, Kriketos A et al. Long-term persistence of hormonal adaptations to weight loss. N Engl J Med 2011; 365: 1597–1604.

    CAS  PubMed  Google Scholar 

  23. Connor SC, Hansen MK, Corner A, Smith RF, Ryan TE . Integration of metabolomics and transcriptomics data to aid biomarker discovery in type 2 diabetes. Mol bioSyst 2010; 6: 909–921.

    CAS  PubMed  Google Scholar 

  24. Fiehn O, Garvey WT, Newman JW, Lok KH, Hoppel CL, Adams SH . Plasma metabolomic profiles reflective of glucose homeostasis in non-diabetic and type 2 diabetic obese African-American women. PLoS One 2010; 5: e15234.

    PubMed  PubMed Central  Google Scholar 

  25. Floegel A, Stefan N, Yu Z, Muhlenbruch K, Drogan D, Joost HG et al. Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach. Diabetes 2013; 62: 639–648.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Grapov D, Adams SH, Pedersen TL, Garvey WT, Newman JW . Type 2 diabetes associated changes in the plasma non-esterified fatty acids, oxylipins and endocannabinoids. PLoS One 2012; 7: e48852.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Suhre K, Meisinger C, Doring A, Altmaier E, Belcredi P, Gieger C et al. Metabolic footprint of diabetes: a multiplatform metabolomics study in an epidemiological setting. PLoS One 2010; 5: e13953.

    PubMed  PubMed Central  Google Scholar 

  28. Li P, Lu M, Nguyen MT, Bae EJ, Chapman J, Feng D et al. Functional heterogeneity of CD11c-positive adipose tissue macrophages in diet-induced obese mice. J Biol Chem 2010; 285: 15333–15345.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Bellocchio L, Cervino C, Pasquali R, Pagotto U . The endocannabinoid system and energy metabolism. J Neuroendocrinol 2008; 20: 850–857.

    CAS  PubMed  Google Scholar 

  30. Bellocchio L, Cervino C, Vicennati V, Pasquali R, Pagotto U . Cannabinoid type 1 receptor: another arrow in the adipocytes' bow. J Neuroendocrinol 2008; 20 (Suppl 1): 130–138.

    CAS  PubMed  Google Scholar 

  31. Borg ML, Omran SF, Weir J, Meikle PJ, Watt MJ . Consumption of a high-fat diet, but not regular endurance exercise training, regulates hypothalamic lipid accumulation in mice. J Physiol 2012; 590 (Pt 17): 4377–4389.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Holland WL, Bikman BT, Wang LP, Yuguang G, Sargent KM, Bulchand S et al. Lipid-induced insulin resistance mediated by the proinflammatory receptor TLR4 requires saturated fatty acid-induced ceramide biosynthesis in mice. J Clin Invest 2011; 121: 1858–1870.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Holland WL, Brozinick JT, Wang LP, Hawkins ED, Sargent KM, Liu Y et al. Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance. Cell Metab 2007; 5: 167–179.

    CAS  PubMed  Google Scholar 

  34. Moller K, Ostermann AI, Rund K, Thoms S, Blume C, Stahl F et al. Influence of weight reduction on blood levels of C-reactive protein, tumor necrosis factor-alpha, interleukin-6, and oxylipins in obese subjects. Prostaglandins Leukot Essent Fatty Acids 2016; 106: 39–49.

    PubMed  Google Scholar 

  35. Newman JW, Pedersen TL, Brandenburg VR, Harris WS, Shearer GC . Effect of omega-3 fatty acid ethyl esters on the oxylipin composition of lipoproteins in hypertriglyceridemic, statin-treated subjects. PLoS One 2014; 9: e111471.

    PubMed  PubMed Central  Google Scholar 

  36. Osei-Hyiaman D, DePetrillo M, Pacher P, Liu J, Radaeva S, Batkai S et al. Endocannabinoid activation at hepatic CB1 receptors stimulates fatty acid synthesis and contributes to diet-induced obesity. J Clin Invest 2005; 115: 1298–1305.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Osei-Hyiaman D, Liu J, Zhou L, Godlewski G, Harvey-White J, Jeong WI et al. Hepatic CB1 receptor is required for development of diet-induced steatosis, dyslipidemia, and insulin and leptin resistance in mice. J Clin Invest 2008; 118: 3160–3169.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Romero-Zerbo SY, Bermudez-Silva FJ . Cannabinoids, eating behaviour, and energy homeostasis. Drug Test Anal 2014; 6: 52–58.

    CAS  PubMed  Google Scholar 

  39. Shearer GC, Harris WS, Pedersen TL, Newman JW . Detection of omega-3 oxylipins in human plasma and response to treatment with omega-3 acid ethyl esters. J Lipid Res 2010; 51: 2074–2081.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Strassburg K, Huijbrechts AM, Kortekaas KA, Lindeman JH, Pedersen TL, Dane A et al. Quantitative profiling of oxylipins through comprehensive LC-MS/MS analysis: application in cardiac surgery. Anal Bioanal Chem 2012; 404: 1413–1426.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Tourdot BE, Ahmed I, Holinstat M . The emerging role of oxylipins in thrombosis and diabetes. Front Pharmacol 2014; 4: 176.

    PubMed  PubMed Central  Google Scholar 

  42. Xia JY, Holland WL, Kusminski CM, Sun K, Sharma AX, Pearson MJ et al. Targeted Induction of Ceramide Degradation Leads to Improved Systemic Metabolism and Reduced Hepatic Steatosis. Cell Metab 2015; 22: 266–278.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Massey KA, Nicolaou A . Lipidomics of oxidized polyunsaturated fatty acids. Free Radical Biol Med 2013; 59: 45–55.

    CAS  Google Scholar 

  44. Chakrabarti SK, Wen Y, Dobrian AD, Cole BK, Ma Q, Pei H et al. Evidence for activation of inflammatory lipoxygenase pathways in visceral adipose tissue of obese Zucker rats. Am J Physiol Endocrinol Metab 2011; 300: E175–E187.

    CAS  PubMed  Google Scholar 

  45. Di Marzo V, Goparaju SK, Wang L, Liu J, Batkai S, Jarai Z et al. Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature 2001; 410: 822–825.

    CAS  PubMed  Google Scholar 

  46. Kirkham TC, Williams CM, Fezza F, Di Marzo V . Endocannabinoid levels in rat limbic forebrain and hypothalamus in relation to fasting, feeding and satiation: stimulation of eating by 2-arachidonoyl glycerol. Br J Pharmacol 2002; 136: 550–557.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Gao S, Zhu G, Gao X, Wu D, Carrasco P, Casals N et al. Important roles of brain-specific carnitine palmitoyltransferase and ceramide metabolism in leptin hypothalamic control of feeding. Proc Natl Acad Sci USA 2011; 108: 9691–9696.

    CAS  PubMed  Google Scholar 

  48. Osborn O, Oh DY, McNelis J, Sanchez-Alavez M, Talukdar S, Lu M et al. G protein-coupled receptor 21 deletion improves insulin sensitivity in diet-induced obese mice. J Clin Invest 2012; 122: 2444–2453.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Bielawski J, Pierce JS, Snider J, Rembiesa B, Szulc ZM, Bielawska A . Comprehensive quantitative analysis of bioactive sphingolipids by high-performance liquid chromatography-tandem mass spectrometry. Methods Mol Biol 2009; 579: 443–467.

    CAS  PubMed  Google Scholar 

  50. Ying W, Wollam J, Ofrecio JM, Bandyopadhyay G, El Ouarrat D, Lee YS et al. Adipose tissue B2 cells promote insulin resistance through leukotriene LTB4/LTB4R1 signaling. J Clin Invest 2017; 127: 1019–1030.

    PubMed  PubMed Central  Google Scholar 

  51. Halushka PV, Mais DE, Mayeux PR, Morinelli TA . Thromboxane prostaglandin and leukotriene receptors. Annu Rev Pharmacol Toxicol 1989; 29: 213–239.

    CAS  PubMed  Google Scholar 

  52. Joo M, Sadikot RT . PGD synthase and PGD2 in immune response. Mediators Inflamm 2012; 2012: 503128.

    PubMed  PubMed Central  Google Scholar 

  53. Urade Y, Hayaishi O . Biochemical, structural, genetic, physiological, and pathophysiological features of lipocalin-type prostaglandin D synthase. Biochim Biophys Acta 2000; 1482: 259–271.

    CAS  PubMed  Google Scholar 

  54. Kanaoka Y, Urade Y . Hematopoietic prostaglandin D synthase. Prostaglandins Leukot Essent Fatty Acids 2003; 69: 163–167.

    CAS  PubMed  Google Scholar 

  55. Urade Y, Hayaishi O . Prostaglandin D synthase: structure and function. Vitam Horm 2000; 58: 89–120.

    CAS  PubMed  Google Scholar 

  56. Zamarron BF, Mergian TA, Cho KW, Martinez-Santibanez G, Luan D, Singer K et al. Macrophage proliferation sustains adipose tissue inflammation in formerly obese mice. Diabetes 2017; 66: 392–406.

    CAS  PubMed  Google Scholar 

  57. Sears DD, Hsiao G, Hsiao A, Yu JG, Courtney CH, Ofrecio JM et al. Mechanisms of human insulin resistance and thiazolidinedione-mediated insulin sensitization. Proc Natl Acad Sci USA 2009; 106: 18745–18750.

    CAS  PubMed  Google Scholar 

  58. MacLaren RE, Cui W, Lu H, Simard S, Cianflone K . Association of adipocyte genes with ASP expression: a microarray analysis of subcutaneous and omental adipose tissue in morbidly obese subjects. BMC Med Genet 2010; 3: 3.

    Google Scholar 

  59. Magkos F, Fraterrigo G, Yoshino J, Luecking C, Kirbach K, Kelly SC et al. Effects of moderate and subsequent progressive weight loss on metabolic function and adipose tissue biology in humans with obesity. Cell Metab 2016; 23: 591–601.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Nookaew I, Svensson PA, Jacobson P, Jernas M, Taube M, Larsson I et al. Adipose tissue resting energy expenditure and expression of genes involved in mitochondrial function are higher in women than in men. J Clin Endocrinol Metab 2013; 98: E370–E378.

    CAS  PubMed  Google Scholar 

  61. Psychogios N, Hau DD, Peng J, Guo AC, Mandal R, Bouatra S et al. The human serum metabolome. PLoS One 2011; 6: e16957.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Silva CA, Webb K, Andre BG, Marques MA, de Carvalho FM, de Macedo CS et al. Type 1 reaction in leprosy patients corresponds with a decrease in pro-resolving and an increase in pro-inflammatory lipid mediators. J Infect Dis 2017; 215: 431–439.

    CAS  PubMed  Google Scholar 

  63. Thongdee P, Kuesap J, Wisedpanichkij R, Na-Bangchang K . Possible role of PGD2 in malaria infections. Asian Pac J Trop Med 2016; 9: 856–859.

    CAS  PubMed  Google Scholar 

  64. Zhai L, Guo X, Zhang H, Jin Q, Zeng Q, Tang X et al. Non-ionic iodinated contrast media related immediate reactions: a mechanism study of 27 patients. Leg Med 2017; 24: 56–62.

    CAS  Google Scholar 

  65. Ohinata K, Takagi K, Biyajima K, Fujiwara Y, Fukumoto S, Eguchi N et al. Central prostaglandin D(2) stimulates food intake via the neuropeptide Y system in mice. FEBS Lett 2008; 582: 679–684.

    CAS  PubMed  Google Scholar 

  66. Aritake K, Kado Y, Inoue T, Miyano M, Urade Y . Structural and functional characterization of HQL-79, an orally selective inhibitor of human hematopoietic prostaglandin D synthase. J Biol Chem 2006; 281: 15277–15286.

    CAS  PubMed  Google Scholar 

  67. Farhat A, Philibert P, Sultan C, Poulat F, Boizet-Bonhoure B . Hematopoietic-prostaglandin D2 synthase through PGD2 production is involved in the adult ovarian physiology. J Ovarian Res 2011; 4: 3.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Matsushita N, Aritake K, Takada A, Hizue M, Hayashi K, Mitsui K et al. Pharmacological studies on the novel antiallergic drug HQL-79: II. Elucidation of mechanisms for antiallergic and antiasthmatic effects. Jpn J Pharmacol 1998; 78: 11–22.

    CAS  PubMed  Google Scholar 

  69. Matsushita N, Hizue M, Aritake K, Hayashi K, Takada A, Mitsui K et al. Pharmacological studies on the novel antiallergic drug HQL-79: I. Antiallergic and antiasthmatic effects in various experimental models. Jpn J Pharmacol 1998; 78: 1–10.

    CAS  PubMed  Google Scholar 

  70. Huang ZL, Urade Y, Hayaishi O . Prostaglandins and adenosine in the regulation of sleep and wakefulness. Curr Opin Pharmacol 2007; 7: 33–38.

    CAS  PubMed  Google Scholar 

  71. Popp L, Haussler A, Olliges A, Nusing R, Narumiya S, Geisslinger G et al. Comparison of nociceptive behavior in prostaglandin E, F, D, prostacyclin and thromboxane receptor knockout mice. Eur J Pain 2009; 13: 691–703.

    CAS  PubMed  Google Scholar 

  72. Hirai H, Tanaka K, Yoshie O, Ogawa K, Kenmotsu K, Takamori Y et al. Prostaglandin D2 selectively induces chemotaxis in T helper type 2 cells, eosinophils, and basophils via seven-transmembrane receptor CRTH2. J Exp Med 2001; 193: 255–261.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Sugimoto Y, Narumiya S, Ichikawa A . Distribution and function of prostanoid receptors: studies from knockout mice. Progress in Lipid Res 2000; 39: 289–314.

    CAS  Google Scholar 

  74. Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK . The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature 1998; 391: 79–82.

    CAS  PubMed  Google Scholar 

  75. Virtue S, Masoodi M, de Weijer BA, van Eijk M, Mok CY, Eiden M et al. Prostaglandin profiling reveals a role for haematopoietic prostaglandin D synthase in adipose tissue macrophage polarisation in mice and humans. Int J Obes 2015; 39: 1151–1160.

    CAS  Google Scholar 

  76. Fujitani Y, Aritake K, Kanaoka Y, Goto T, Takahashi N, Fujimori K et al. Pronounced adipogenesis and increased insulin sensitivity caused by overproduction of prostaglandin D2 in vivo. FEBS J 2010; 277: 1410–1419.

    CAS  PubMed  Google Scholar 

  77. Elias E, Benrick A, Behre CJ, Ekman R, Zetterberg H, Stenlof K et al. Central nervous system lipocalin-type prostaglandin D2-synthase is correlated with orexigenic neuropeptides, visceral adiposity and markers of the hypothalamic-pituitary-adrenal axis in obese humans. J Neuroendocrinol 2011; 23: 501–507.

    CAS  PubMed  Google Scholar 

  78. Suzuki F, Hayashi H, Hayaishi O . Transport of prostaglandin D2 into brain. Brain Res 1986; 385: 321–328.

    CAS  PubMed  Google Scholar 

  79. Carron CP, Trujillo JI, Olson KL, Huang W, Hamper BC, Dice T et al. Discovery of an Oral Potent Selective Inhibitor of Hematopoietic Prostaglandin D Synthase (HPGDS). ACS Med Chem Lett 2010; 1: 59–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Mazari AM, Hegazy UM, Mannervik B . Identification of new inhibitors for human hematopoietic prostaglandin D2 synthase among FDA-approved drugs and other compounds. Chem Biol Interact 2015; 229: 91–99.

    CAS  PubMed  Google Scholar 

  81. Friedman JM, Halaas JL . Leptin and the regulation of body weight in mammals. Nature 1998; 395: 763–770.

    CAS  PubMed  Google Scholar 

  82. Morton GJ, Cummings DE, Baskin DG, Barsh GS, Schwartz MW . Central nervous system control of food intake and body weight. Nature 2006; 443: 289–295.

    CAS  PubMed  Google Scholar 

  83. Osborn O, Olefsky JM . The cellular and signaling networks linking the immune system and metabolism in disease. Nat Med 2012; 18: 363–374.

    CAS  PubMed  Google Scholar 

  84. Bartness TJ, Shrestha YB, Vaughan CH, Schwartz GJ, Song CK . Sensory and sympathetic nervous system control of white adipose tissue lipolysis. Mol Cell Endocrinol 2010; 318: 34–43.

    CAS  PubMed  Google Scholar 

  85. Song CK, Schwartz GJ, Bartness TJ . Anterograde transneuronal viral tract tracing reveals central sensory circuits from white adipose tissue. Am J Physiol Regul Integr Comp Physiol 2009; 296: R501–R511.

    CAS  PubMed  Google Scholar 

  86. Arner E, Westermark PO, Spalding KL, Britton T, Ryden M, Frisen J et al. Adipocyte turnover: relevance to human adipose tissue morphology. Diabetes 2010; 59: 105–109.

    CAS  PubMed  Google Scholar 

  87. Arner P, Bernard S, Salehpour M, Possnert G, Liebl J, Steier P et al. Dynamics of human adipose lipid turnover in health and metabolic disease. Nature 2011; 478: 110–113.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by UCSD/UCLA NIDDK Diabetes Research Center P30 DK063491 (OO) and a Pilot and Feasibility grant (OO) from the UC Davis NIH West Coast Metabolomics Center U24 DK097154. Angelina Hernandez-Carretero is an IRACDA fellow and was supported by NIGMS/NIH award K12GM068524. Additional funding was provided by USDA intramural project #2032-51530-022-00D (JWN). EB is supported by the Swedish Research Council (no. 2016/82), the Swedish Society for Medical Research (no. S150086), Åke Wiberg’s Foundation (no. M15-0058), Knut & Alice Wallenberg Foundation, Wallenberg Centre for Molecular & Translational Medicine, University of Gothenburg, Sweden. VW reports grants from Western Region of Sweden; ALFGBG-542701, grants from Erik and Lily Philipson memorial foundation, during the conduct of the study; personal fees from Johnson & Johnson, outside the submitted work. The USDA is an equal opportunity provider and employer. We thank Johannes Fahrmann for his contribution to the statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O Osborn.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on International Journal of Obesity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernandez-Carretero, A., Weber, N., La Frano, M. et al. Obesity-induced changes in lipid mediators persist after weight loss. Int J Obes 42, 728–736 (2018). https://doi.org/10.1038/ijo.2017.266

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2017.266

This article is cited by

Search

Quick links