Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Epidemiology and Population Health

Total and specific dietary polyphenol intakes and 6-year anthropometric changes in a middle-aged general population cohort

Abstract

Background:

Dietary polyphenols are suggested antiobesogenic agents. Prospective evidence in general population of an association between polyphenol intakes and anthropometry is lacking.

Objective:

To assess the associations between dietary polyphenol intakes and changes in body mass index (BMI) and waist circumference (WC) over a 6-year period.

Methods:

Individual intakes of 264 different polyphenols (mg day−1) were estimated using the Phenol-Explorer database and the mean of 6–17 24-h dietary records collected in 1994–1996. BMI in kg m−2 and WC in cm were measured in 1995–1996, 1998–1999 and 2001–2002. Linear mixed-effect models allowed for the assessment of longitudinal associations between energy-adjusted quartiles of total polyphenol intake as well as intake of 15 polyphenol classes and changes of these respective polyphenol classes in anthropometry over the 6 years of follow-up. Adjustment variables included sex, age, socio-economic status, lifestyle, dietary intakes and health status.

Results:

Participants in the highest quartile of intake of flavanones (BMI change: −0.28 (−0.43; −0.13), P=0.009), flavones (BMI change: −0.29 (−0.44; −0.14), P=0.008) and lignans (BMI change: −0.28 (−1.63; −0.09), P=0.01) experienced a less notable increase in BMI over time compared with their counterparts in the bottom quartile of intake of the respective polyphenol classes. Participants in the highest quartile of intake of flavanones (WC change: −1.39 (−2.02; −0.92), P=0.001), flavones (WC change: −1.57 (−2.32; −0.92), P=0.001), hydroxycinnamic acids (WC change: −1.27 (−1.92; −0.63), P=0.01), lignans (WC change: −1.16 (−1.80; −0.51), P=0.006) and total polyphenol intake (WC change: −1.39 (−2.05; −0.74), P=0.001) experienced a less notable increase in WC over time compared with their counterparts in the bottom quartile of intake of the respective polyphenols.

Conclusions:

Dietary polyphenol intakes may help reduce weight gain over time in the general population. This could have important public health implications because moderate increases in BMI and WC over time have been shown to increase disease risk.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Postorino M, Marino C, Tripepi G, Zoccali C, CREDIT (Calabria Registry of Dialysis and Transplantation) Working Group. Abdominal obesity and all-cause and cardiovascular mortality in end-stage renal disease. J Am Coll Cardiol 2009; 53: 1265–1272.

    Article  Google Scholar 

  2. Ogden CL, Carroll MD, Curtin LR, McDowell MA, Tabak CJ, Flegal KM . Prevalence of overweight and obesity in the United States, 1999-2004. JAMA 2006; 295: 1549–1555.

    Article  CAS  Google Scholar 

  3. Fogelholm M, Kujala U, Kaprio J, Sarna S . Predictors of weight change in middle-aged and old men. Obes Res 2000; 8: 367–373.

    Article  CAS  Google Scholar 

  4. Kahn HS, Tatham LM, Rodriguez C, Calle EE, Thun MJ, Heath CW Jr. . Stable behaviors associated with adults' 10-year change in body mass index and likelihood of gain at the waist. Am J Public Health 1997; 87: 747–754.

    Article  CAS  Google Scholar 

  5. Sobal J, Rauschenbach B, Frongillo EA . Marital status changes and body weight changes: a US longitudinal analysis. Soc Sci Med 2003; 56: 1543–1555.

    Article  Google Scholar 

  6. Vioque J, Torres A, Quiles J . Time spent watching television, sleep duration and obesity in adults living in Valencia, Spain. Int J Obes Relat Metab Disord 2000; 24: 1683–1688.

    Article  CAS  Google Scholar 

  7. Neveu V, Perez-Jimenez J, Vos F, Crespy V, du Chaffaut L, Mennen L et al. Phenol-Explorer: an online comprehensive database on polyphenol contents in foods. Database (Oxford) 2010; 2010: bap024.

    Article  CAS  Google Scholar 

  8. Perez-Jimenez J, Fezeu L, Touvier M, Arnault N, Manach C, Hercberg S et al. Dietary intake of 337 polyphenols in French adults. Am J Clin Nutr 2011; 93: 1220–1228.

    Article  CAS  Google Scholar 

  9. Henning SM, Niu Y, Lee NH, Thames GD, Minutti RR, Wang H et al. Bioavailability and antioxidant activity of tea flavanols after consumption of green tea, black tea, or a green tea extract supplement. Am J Clin Nutr 2004; 80: 1558–1564.

    Article  CAS  Google Scholar 

  10. Aron PM, Kennedy JA . Flavan-3-ols: nature, occurrence and biological activity. Mol Nutr Food Res 2008; 52: 79–104.

    Article  CAS  Google Scholar 

  11. de Boer VC, van Schothorst EM, Dihal AA, van der Woude H, Arts IC, Rietjens IM et al. Chronic quercetin exposure affects fatty acid catabolism in rat lung. Cell Mol Life Sci 2006; 63: 2847–2858.

    Article  CAS  Google Scholar 

  12. Diepvens K, Kovacs EM, Vogels N, Westerterp-Plantenga MS . Metabolic effects of green tea and of phases of weight loss. Physiol Behav 2006; 87: 185–191.

    Article  CAS  Google Scholar 

  13. Dulloo AG, Duret C, Rohrer D, Girardier L, Mensi N, Fathi M et al. Efficacy of a green tea extract rich in catechin polyphenols and caffeine in increasing 24-h energy expenditure and fat oxidation in humans. Am J Clin Nutr 1999; 70: 1040–1045.

    Article  CAS  Google Scholar 

  14. Kwon SH, Ahn IS, Kim SO, Kong CS, Chung HY, Do MS et al. Anti-obesity and hypolipidemic effects of black soybean anthocyanins. J Med Food 2007; 10: 552–556.

    Article  CAS  Google Scholar 

  15. Tsuda T . Regulation of adipocyte function by anthocyanins; possibility of preventing the metabolic syndrome. J Agric Food Chem 2008; 56: 642–646.

    Article  CAS  Google Scholar 

  16. Choo JJ . Green tea reduces body fat accretion caused by high-fat diet in rats through beta-adrenoceptor activation of thermogenesis in brown adipose tissue. J Nutr Biochem 2003; 14: 671–676.

    Article  CAS  Google Scholar 

  17. Wolfram S, Raederstorff D, Wang Y, Teixeira SR, Elste V, Weber P . TEAVIGO (epigallocatechin gallate) supplementation prevents obesity in rodents by reducing adipose tissue mass. Ann Nutr Metab 2005; 49: 54–63.

    Article  CAS  Google Scholar 

  18. Boschmann M, Thielecke F . The effects of epigallocatechin-3-gallate on thermogenesis and fat oxidation in obese men: a pilot study. J Am Coll Nutr 2007; 26: 389S–395S.

    Article  CAS  Google Scholar 

  19. Chantre P, Lairon D . Recent findings of green tea extract AR25 (Exolise) and its activity for the treatment of obesity. Phytomedicine 2002; 9: 3–8.

    Article  CAS  Google Scholar 

  20. Ikeda I, Hamamoto R, Uzu K, Imaizumi K, Nagao K, Yanagita T et al. Dietary gallate esters of tea catechins reduce deposition of visceral fat, hepatic triacylglycerol, and activities of hepatic enzymes related to fatty acid synthesis in rats. Biosci Biotechnol Biochem 2005; 69: 1049–1053.

    Article  CAS  Google Scholar 

  21. Amiot MJ, Riva C, Vinet A . Effects of dietary polyphenols on metabolic syndrome features in humans: a systematic review. Obes Rev 2016; 17: 573–586.

    Article  CAS  Google Scholar 

  22. Hercberg S, Galan P, Preziosi P, Bertrais S, Mennen L, Malvy D et al. The SU.VI.MAX Study: a randomized, placebo-controlled trial of the health effects of antioxidant vitamins and minerals. Arch Intern Med 2004; 164: 2335–2342.

    Article  CAS  Google Scholar 

  23. Le Moullec N, Deheeger M, Preziosi P, Monteireo P, Valeix P, Rolland-Cachera M-F et al. [Validation du manuel photos utilisé pour l'enquête alimentaire de l'étude SU.VI.MAX]. Cah Nutr Diét 1996; 31: 158–164.

    Google Scholar 

  24. Hercberg S (coordinator). Table de Composition SU.VI.MAX des Aliments. Les éditions INSERM/Economica: Paris, 2005, p. 182.

  25. Finucane MM, Samet JH, Horton NJ . Translational methods in biostatistics: linear mixed effect regression models of alcohol consumption and HIV disease progression over time. Epidemiol Perspect Innov 2007; 4: 8.

    Article  Google Scholar 

  26. Diepvens K, Westerterp KR, Westerterp-Plantenga MS . Obesity and thermogenesis related to the consumption of caffeine, ephedrine, capsaicin, and green tea. Am J Physiol Regul Integr Comp Physiol 2007; 292: R77–R85.

    Article  CAS  Google Scholar 

  27. Phung OJ, Baker WL, Matthews LJ, Lanosa M, Thorne A, Coleman CI . Effect of green tea catechins with or without caffeine on anthropometric measures: a systematic review and meta-analysis. Am J Clin Nutr 2010; 91: 73–81.

    Article  CAS  Google Scholar 

  28. Bhathena SJ, Velasquez MT . Beneficial role of dietary phytoestrogens in obesity and diabetes. Am J Clin Nutr 2002; 76: 1191–1201.

    Article  CAS  Google Scholar 

  29. Fukumitsu S, Aida K, Ueno N, Ozawa S, Takahashi Y, Kobori M . Flaxseed lignan attenuates high-fat diet-induced fat accumulation and induces adiponectin expression in mice. Br J Nutr 2008; 100: 669–676.

    Article  CAS  Google Scholar 

  30. Grove KA, Lambert JD . Laboratory, epidemiological, and human intervention studies show that tea (Camellia sinensis may be useful in the prevention of obesity. J Nutr 2010; 140: 446–453.

    Article  CAS  Google Scholar 

  31. Pajuelo D, Quesada H, Diaz S, Fernandez-Iglesias A, Arola-Arnal A, Blade C et al. Chronic dietary supplementation of proanthocyanidins corrects the mitochondrial dysfunction of brown adipose tissue caused by diet-induced obesity in Wistar rats. Br J Nutr 2012; 107: 170–178.

    Article  CAS  Google Scholar 

  32. Shixian Q, VanCrey B, Shi J, Kakuda Y, Jiang Y . Green tea extract thermogenesis-induced weight loss by epigallocatechin gallate inhibition of catechol-O-methyltransferase. J Med Food 2006; 9: 451–458.

    Article  CAS  Google Scholar 

  33. Tham DM, Gardner CD, Haskell WL . Clinical review 97: Potential health benefits of dietary phytoestrogens: a review of the clinical, epidemiological, and mechanistic evidence. J Clin Endocrinol Metab 1998; 83: 2223–2235.

    CAS  PubMed  Google Scholar 

  34. Orgaard A, Jensen L . The effects of soy isoflavones on obesity. Exp Biol Med (Maywood) 2008; 233: 1066–1080.

    Article  Google Scholar 

  35. Birari RB, Bhutani KK . Pancreatic lipase inhibitors from natural sources: unexplored potential. Drug Discov Today 2007; 12: 879–889.

    Article  CAS  Google Scholar 

  36. Kreydiyyeh SI, Abdel-Hasan Baydoun E, Churukian ZM . Tea extract inhibits intestinal absorption of glucose and sodium in rats. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 1994; 108: 359–365.

    Article  CAS  Google Scholar 

  37. Rastmanesh R . High polyphenol, low probiotic diet for weight loss because of intestinal microbiota interaction. Chem Biol Interact 2011; 189: 1–8.

    Article  CAS  Google Scholar 

  38. Uchiyama S, Taniguchi Y, Saka A, Yoshida A, Yajima H . Prevention of diet-induced obesity by dietary black tea polyphenols extract in vitro and in vivo. Nutrition 2011; 27: 287–292.

    Article  CAS  Google Scholar 

  39. Hughes LA, Arts IC, Ambergen T, Brants HA, Dagnelie PC, Goldbohm RA et al. Higher dietary flavone, flavonol, and catechin intakes are associated with less of an increase in BMI over time in women: a longitudinal analysis from the Netherlands Cohort Study. Am J Clin Nutr 2008; 88: 1341–1352.

    CAS  PubMed  Google Scholar 

  40. Wu CH, Yang YC, Yao WJ, Lu FH, Wu JS, Chang CJ . Epidemiological evidence of increased bone mineral density in habitual tea drinkers. Arch Intern Med 2002; 162: 1001–1006.

    Article  Google Scholar 

  41. Wu CH, Lu FH, Chang CS, Chang TC, Wang RH, Chang CJ . Relationship among habitual tea consumption, percent body fat, and body fat distribution. Obes Res 2003; 11: 1088–1095.

    Article  Google Scholar 

  42. Kono S, Shinchi K, Wakabayashi K, Honjo S, Todoroki I, Sakurai Y et al. Relation of green tea consumption to serum lipids and lipoproteins in Japanese men. J Epidemiol 1996; 6: 128–133.

    Article  CAS  Google Scholar 

  43. Tokunaga S, White IR, Frost C, Tanaka K, Kono S, Tokudome S et al. Green tea consumption and serum lipids and lipoproteins in a population of healthy workers in Japan. Ann Epidemiol 2002; 12: 157–165.

    Article  Google Scholar 

  44. Williamson G, Manach C . Bioavailability and bioefficacy of polyphenols in humans. II. Review of 93 intervention studies. Am J Clin Nutr 2005; 81 (1 Suppl): 243S–255S.

    Article  CAS  Google Scholar 

  45. Manach C, Williamson G, Morand C, Scalbert A, Remesy C . Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr 2005; 81 (1 Suppl): 230S–242S.

    Article  CAS  Google Scholar 

  46. Renehan AG, Tyson M, Egger M, Heller RF, Zwahlen M . Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet 2008; 371: 569–578.

    Article  Google Scholar 

  47. Czernichow S, Mennen L, Bertrais S, Preziosi P, Hercberg S, Oppert JM . Relationships between changes in weight and changes in cardiovascular risk factors in middle-aged French subjects: effect of dieting. Int J Obes Relat Metab Disord 2002; 26: 1138–1143.

    Article  CAS  Google Scholar 

  48. Adams KF, Schatzkin A, Harris TB, Kipnis V, Mouw T, Ballard-Barbash R et al. Overweight, obesity, and mortality in a large prospective cohort of persons 50 to 71 years old. N Engl J Med 2006; 355: 763–778.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Institute of Health and Medical Research (INSERM U557), the French National Institute for Agricultural Research (INRA U1125) and Paris 13 University. We also obtained financial assistance, through a postdoctoral allocation, from the CORDDIM for the data analyses. The funding sources are public or non-profit organizations and had no role in designing or conducting the study, analyzing or interpreting the data or approving the submitted manuscript. LF had full access to all data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L K Fezeu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on International Journal of Obesity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adriouch, S., Kesse-Guyot, E., Feuillet, T. et al. Total and specific dietary polyphenol intakes and 6-year anthropometric changes in a middle-aged general population cohort. Int J Obes 42, 310–317 (2018). https://doi.org/10.1038/ijo.2017.227

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2017.227

This article is cited by

Search

Quick links