Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

The Tol2 transposon system mediates the genetic engineering of T-cells with CD19-specific chimeric antigen receptors for B-cell malignancies

Abstract

Engineered T-cell therapy using a CD19-specific chimeric antigen receptor (CD19-CAR) is a promising strategy for the treatment of advanced B-cell malignancies. Gene transfer of CARs to T-cells has widely relied on retroviral vectors, but transposon-based gene transfer has recently emerged as a suitable nonviral method to mediate stable transgene expression. The advantages of transposon vectors compared with viral vectors include their simplicity and cost-effectiveness. We used the Tol2 transposon system to stably transfer CD19-CAR into human T-cells. Normal human peripheral blood lymphocytes were co-nucleofected with the Tol2 transposon donor plasmid carrying CD19-CAR and the transposase expression plasmid and were selectively propagated on NIH3T3 cells expressing human CD19. Expanded CD3+ T-cells with stable and high-level transgene expression (~95%) produced interferon-γ upon stimulation with CD19 and specifically lysed Raji cells, a CD19+ human B-cell lymphoma cell line. Adoptive transfer of these T-cells suppressed tumor progression in Raji tumor-bearing Rag2−/−γc−/− immunodeficient mice compared with control mice. These results demonstrate that the Tol2 transposon system could be used to express CD19-CAR in genetically engineered T-cells for the treatment of refractory B-cell malignancies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Davila ML, Brentjens R, Wang X, Riviere I, Sadelain M . How do CARs work?: Early insights from recent clinical studies targeting CD19. Oncoimmunology 2012; 1: 1577–1583.

    Article  Google Scholar 

  2. Kochenderfer JN, Rosenberg SA . Treating B-cell cancer with T cells expressing anti-CD19 chimeric antigen receptors. Nat Rev Clin Oncol 2013; 10: 267–276.

    Article  CAS  Google Scholar 

  3. Kawakami K . Tol2: a versatile gene transfer vector in vertebrates. Genome Biol 2007; 8 (Suppl 1): S7.

    Article  Google Scholar 

  4. Yagita K, Yamanaka I, Emoto N, Kawakami K, Shimada S . Real-time monitoring of circadian clock oscillations in primary cultures of mammalian cells using Tol2 transposon-mediated gene transfer strategy. BMC Biotechnol 2010; 10: 3.

    Article  Google Scholar 

  5. Kawakami K, Noda T . Transposition of the Tol2 element, an Ac-like element from the Japanese medaka fish Oryzias latipes, in mouse embryonic stem cells. Genetics 2004; 166: 895–899.

    Article  CAS  Google Scholar 

  6. Suster ML, Sumiyama K, Kawakami K . Transposon-mediated BAC transgenesis in zebrafish and mice. BMC Genomics 2009; 10: 477.

    Article  Google Scholar 

  7. Urasaki A, Morvan G, Kawakami K . Functional dissection of the Tol2 transposable element identified the minimal cis-sequence and a highly repetitive sequence in the subterminal region essential for transposition. Genetics 2006; 174: 639–649.

    Article  CAS  Google Scholar 

  8. Rostovskaya M, Fu J, Obst M, Baer I, Weidlich S, Wang H et al. Transposon-mediated BAC transgenesis in human ES cells. Nucleic Acids Res 2012; 40: e150.

    Article  CAS  Google Scholar 

  9. Grabundzija I, Irgang M, Mates L, Belay E, Matrai J, Gogol-Doring A et al. Comparative analysis of transposable element vector systems in human cells. Mol Ther 2010; 18: 1200–1209.

    Article  CAS  Google Scholar 

  10. Manuri PV, Wilson MH, Maiti SN, Mi T, Singh H, Olivares S et al. piggyBac transposon/transposase system to generate CD19-specific T cells for the treatment of B-lineage malignancies. Hum Gene Ther 2010; 21: 427–437.

    Article  CAS  Google Scholar 

  11. Singh H, Manuri PR, Olivares S, Dara N, Dawson MJ, Huls H et al. Redirecting specificity of T-cell populations for CD19 using the Sleeping Beauty system. Cancer Res 2008; 68: 2961–2971.

    Article  CAS  Google Scholar 

  12. Kebriaei P, Huls H, Jena B, Munsell M, Jackson R, Lee DA et al. Infusing CD19-directed T cells to augment disease control in patients undergoing autologous hematopoietic stem-cell transplantation for advanced B-lymphoid malignancies. Hum Gene Ther 2012; 23: 444–450.

    Article  CAS  Google Scholar 

  13. Singh H, Figliola MJ, Dawson MJ, Huls H, Olivares S, Switzer K et al. Reprogramming CD19-specific T cells with IL-21 signaling can improve adoptive immunotherapy of B-lineage malignancies. Cancer Res 2011; 71: 3516–3527.

    Article  CAS  Google Scholar 

  14. Saito S, Nakazawa Y, Sueki A, Matsuda K, Tanaka M, Yanagisawa R et al. Anti-leukemic potency of piggyBac-mediated CD19-specific T cells against refractory Philadelphia chromosome-positive acute lymphoblastic leukemia. Cytotherapy 2014; 16: 1257–1269.

    Article  CAS  Google Scholar 

  15. Tsukahara T, Ohmine K, Yamamoto C, Uchibori R, Ido H, Teruya T et al. CD19 target-engineered T-cells accumulate at tumor lesions in human B-cell lymphoma xenograft mouse models. Biochem Biophys Res Commun 2013; 438: 84–89.

    Article  CAS  Google Scholar 

  16. Okazaki T, Chikuma S, Iwai Y, Fagarasan S, Honjo T . A rheostat for immune responses: the unique properties of PD-1 and their advantages for clinical application. Nat Immunol 2013; 14: 1212–1218.

    Article  CAS  Google Scholar 

  17. John LB, Devaud C, Duong CP, Yong CS, Beavis PA, Haynes NM et al. Anti-PD-1 antibody therapy potently enhances the eradication of established tumors by gene-modified T cells. Clin Cancer Res 2013; 19: 5636–5646.

    Article  CAS  Google Scholar 

  18. Lundstrom W, Fewkes NM, Mackall CL . IL-7 in human health and disease. Semin Immunol 2012; 24: 218–224.

    Article  Google Scholar 

  19. Xin KQ, Urabe M, Yang J, Nomiyama K, Mizukami H, Hamajima K et al. A novel recombinant adeno-associated virus vaccine induces a long-term humoral immune response to human immunodeficiency virus. Hum Gene Ther 2001; 12: 1047–1061.

    Article  CAS  Google Scholar 

  20. Maiti SN, Huls H, Singh H, Dawson M, Figliola M, Olivares S et al. Sleeping beauty system to redirect T-cell specificity for human applications. J Immunother 2013; 36: 112–123.

    Article  CAS  Google Scholar 

  21. Peng PD, Cohen CJ, Yang S, Hsu C, Jones S, Zhao Y et al. Efficient nonviral Sleeping Beauty transposon-based TCR gene transfer to peripheral blood lymphocytes confers antigen-specific antitumor reactivity. Gene Therapy 2009; 16: 1042–1049.

    Article  CAS  Google Scholar 

  22. Jin Z, Maiti S, Huls H, Singh H, Olivares S, Mates L et al. The hyperactive Sleeping Beauty transposase SB100X improves the genetic modification of T cells to express a chimeric antigen receptor. Gene Therapy 2011; 18: 849–856.

    Article  CAS  Google Scholar 

  23. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003; 302: 415–419.

    Article  CAS  Google Scholar 

  24. Scholler J, Brady TL, Binder-Scholl G, Hwang WT, Plesa G, Hege KM et al. Decade-long safety and function of retroviral-modified chimeric antigen receptor T cells. Sci Transl Med 2012; 4: 132ra53.

    Article  Google Scholar 

  25. Huang X, Guo H, Tammana S, Jung YC, Mellgren E, Bassi P et al. Gene transfer efficiency and genome-wide integration profiling of Sleeping Beauty, Tol2, and piggyBac transposons in human primary T cells. Mol Ther 2010; 18: 1803–1813.

    Article  CAS  Google Scholar 

  26. Kogure K, Urabe M, Mizukami H, Kume A, Sato Y, Monahan J et al. Targeted integration of foreign DNA into a defined locus on chromosome 19 in K562 cells using AAV-derived components. Int J Hematol 2001; 73: 469–475.

    Article  CAS  Google Scholar 

  27. Sadelain M, Papapetrou EP, Bushman FD . Safe harbours for the integration of new DNA in the human genome. Nat Rev Cancer 2012; 12: 51–58.

    Article  CAS  Google Scholar 

  28. Ammar I, Gogol-Doring A, Miskey C, Chen W, Cathomen T, Izsvak Z et al. Retargeting transposon insertions by the adeno-associated virus Rep protein. Nucleic Acids Res 2012; 40: 6693–6712.

    Article  CAS  Google Scholar 

  29. Brentjens RJ, Santos E, Nikhamin Y, Yeh R, Matsushita M, La Perle K et al. Genetically targeted T cells eradicate systemic acute lymphoblastic leukemia xenografts. Clin Cancer Res 2007; 13 (Pt 1): 5426–5435.

    Article  CAS  Google Scholar 

  30. Yagi H, Ogura T, Mizukami H, Urabe M, Hamada H, Yoshikawa H et al. Complete restoration of phenylalanine oxidation in phenylketonuria mouse by a self-complementary adeno-associated virus vector. J Gene Med 2011; 13: 114–122.

    Article  CAS  Google Scholar 

  31. Latouche JB, Sadelain M . Induction of human cytotoxic T lymphocytes by artificial antigen-presenting cells. Nat Biotechnol 2000; 18: 405–409.

    Article  CAS  Google Scholar 

  32. Tsukahara T, Agawa H, Matsumoto S, Matsuda M, Ueno S, Yamashita Y et al. Murine leukemia virus vector integration favors promoter regions and regional hot spots in a human T-cell line. Biochem Biophys Res Commun 2006; 345: 1099–1107.

    Article  CAS  Google Scholar 

  33. Neri S, Mariani E, Meneghetti A, Cattini L, Facchini A . Calcein-acetyoxymethyl cytotoxicity assay: standardization of a method allowing additional analyses on recovered effector cells and supernatants. Clin Diagn Lab Immunol 2001; 8: 1131–1135.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Kannagi M, Sugamura K, Sato H, Okochi K, Uchino H, Hinuma Y . Establishment of human cytotoxic T cell lines specific for human adult T cell leukemia virus-bearing cells. J Immunol 1983; 130: 2942–2946.

    CAS  PubMed  Google Scholar 

  35. Ohbo K, Suda T, Hashiyama M, Mantani A, Ikebe M, Miyakawa K et al. Modulation of hematopoiesis in mice with a truncated mutant of the interleukin-2 receptor gamma chain. Blood 1996; 87: 956–967.

    CAS  PubMed  Google Scholar 

  36. Ohteki T, Fukao T, Suzue K, Maki C, Ito M, Nakamura M et al. Interleukin 12-dependent interferon gamma production by CD8alpha+ lymphoid dendritic cells. J Exp Med 1999; 189: 1981–1986.

    Article  CAS  Google Scholar 

  37. Shinkai Y, Rathbun G, Lam KP, Oltz EM, Stewart V, Mendelsohn M et al. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 1992; 68: 855–867.

    Article  CAS  Google Scholar 

  38. Wang C, Yi T, Qin L, Maldonado RA, von Andrian UH, Kulkarni S et al. Rapamycin-treated human endothelial cells preferentially activate allogeneic regulatory T cells. J Clin Invest 2013; 123: 1677–1693.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Miyoko Mitsu and Satomi Fujiwara for the AAV preparations. This work was supported in part by a Grant-in-Aid for Scientific Research (Nos. 22700923 and 24390247), a JMU Graduate Student Start-Up Grant for Young Investigators to N Iwase and the MEXT-Supported Program for the Strategic Research Foundation at Private Universities, 2013–2017. We thank Dr M Ito (Central Institute for Experimental Animals) for providing Balb/c Rag2−/−γc−/− mice. We also thank JMU Core Center of Research Apparatus for assistance with flow cytometry. This publication was subsidized by JKA through its promotion funds from KEIRIN RACE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Tsukahara.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsukahara, T., Iwase, N., Kawakami, K. et al. The Tol2 transposon system mediates the genetic engineering of T-cells with CD19-specific chimeric antigen receptors for B-cell malignancies. Gene Ther 22, 209–215 (2015). https://doi.org/10.1038/gt.2014.104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2014.104

This article is cited by

Search

Quick links